
Feasibility of an

Integrated Hardware Garbage Collector

Ed Nutting

May 2017

Project thesis submitted in support of the Degree of

Bachelor of Engineering in Computer Science and Electronics

Department of Electrical & Electronic Engineering

University of Bristol





DECLARATION AND DISCLAIMER

Unless otherwise acknowledged, the content of this thesis is the original work of the author. None

of the work in this thesis has been submitted by the author in support of an application for another

degree or qualification at this or any other university or institute of learning.

The views in this document are those of the author and do not in any way represent those of the

University.

The author confirms that the printed copy and electronic version of this thesis are identical.

Signed:

Dated:

i



Abstract

The majority of modern programming languages are dependent on Garbage Collection (GC) for

memory management. Traditionally, GC has been implemented in software but it comes with a

significant number of drawbacks. Even recent advances in generational, concurrent and hardware-

assisted GC have failed to create a viable system for embedded and real-time devices. Furthermore,

GC provides a trustworthy execution environment by preventing memory errors such as buffer

overflows, nil pointer access, accessing freed memory, failing to free memory, repeat freeing memory,

etc. Enforcing these rules in software without hardware support is difficult and costly, in performance,

code size and development time. A new design for GC that simplifies, reduces cost and provides

real-time performance is required.

This thesis presents a new design for hardware GC that is directly integrated with the CPU

(the IHGC), effectively replacing a traditional MMU. The commercial feasibility of the design is

tested against 51 criteria and is shown to be viable. This thesis demonstrates that the IHGC is

both realisable with current hardware technologies and only requires minimal, achievable, software

changes. Further to this, the IHGC’s performance is shown to be sufficient for real-time applications

and the synthesised design is small enough for embedded devices. The IHGC is faster than the

simplest, non-garbage-collecting equivalent malloc/free routines written in C. This thesis concludes

that the IHGC is a significant step forward for GC design and has wide scope for promising future

work.
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Chapter One

Introduction

Garbage collection (GC) provides safely managed memory for a system, which solves otherwise

insoluble problems. Automatically managed memory reduces code clutter, complexity and number

of bugs and so reduces development and maintenance time, cost and effort. GC is the best known

method of memory management and so dramatically improves security and reliability of software. A

GC-based system achieves this by ensuring memory is automatically freed, pointers are never out of

bounds, and that pointers cannot form without allocating memory or offsetting an existing pointer.

This safe environment protects the programmer from common, often hard-to-find issues such as

memory leaks and buffer overflows. Consequently, GC has become an integral part of widely used

"managed" programming languages.

The majority of systems implement GC in software, which comes at a cost and cannot enforce the

memory model across the entire system. Software GC leads to unavoidable barrier and stop-the-world

conditions which prevent threads from progressing. It also requires a significant amount of processing

time. Due to these limitations, software GC and thus managed languages are not widely used in

areas such as high performance computing (HPC), embedded, or real-time systems.

Unlike with software garbage collectors, it is possible to design GC in hardware which has

complete knowledge of the system at all times. This tackles both the traditional and the previously

insoluble problems of software GC design. For example, hardware controls all memory operations

so can avoid stop-the-world and barrier conditions, and check bounds on all uses of pointers. The

overhead of allocation instructions is also reduced from hundreds to one.

In April 2014, the Heartbleed OpenSSL security flaw caused international panic and is estimated

to have cost hundreds of millions of dollars. Attackers obtained data from any system that enabled

OpenSSL Heartbeat Extension Packets. The packet handling code failed to check buffer boundaries

or to zero-out buffers. Similarly, in February 2017, the Cloudbleed buffer overrun bug allowed

attackers to obtain sensitive data. In both cases a managed memory system would have caught the

1



CHAPTER 1. INTRODUCTION

bugs.

In today’s increasingly security conscious world, hardware GC could bring managed memory to

a wide range of devices thereby decreasing software development time, saving power, increasing

performance and preventing many security flaws and bugs.

1.1 Research Aims

The research presented in this thesis aims to demonstrate the feasibility of an integrated hardware

garbage collector (IHGC) by answering two overarching questions: Can an IHGC system be created

in a reasonable quantity of hardware? Will it have sufficient performance to run real programs?

These are answered by evaluating the system against chosen criteria.

The criteria presented fit current commercial-grade expectations for performance, complexity

and physical size of micro-controller processors. Application-scale processors present additional

challenges, such as pipelining, which will require further investigative work. The criteria cover: the

technical challenge of creating the hardware, integration with an existing processor, quantity of

required hardware, type and scale of system-level optimisations, performance characteristics of the

GC, and ability to execute real programs.

This thesis develops a processor in Verilog synthesised to an FPGA based on the increasingly

popular, open-source RISC-V Instruction Set Architecture (ISA). It is then demonstrated that the

design meets the feasibility criteria through a series of test programs written in assembly and C. It

also suggests that the performance shown combined with future work would enable use in HPC

systems. With the increasing use of Python, Java and other managed programming languages

for embedded, real-time, low-power and HPC software, the system developed here could make a

significant contribution to a growing area of academic and commercial, research and development.

This research does not aim to verify the IHGC or the processor. However, tight upper and lower

bounds at the mico-architectural level of the GC operations are presented. Verification and precise

characterisation of an IHGC (by using other main memory and directory sizes) will form the basis of

future research.

2



1.2. THESIS OUTLINE

1.2 Thesis Outline

Chapter 2 provides background to the large topic of garbage collection and Chapter 3 reviews prior

work in hardware implementations. It is common to find the concept of hardware GC dismissed

as too complex or costly. Chapter 4 dispels these myths by presenting the Integrated Hardware

Garbage Collector design used in this research.

The feasibility criteria for a commercially-viable, embedded-scale IHGC implementation are

prsented in Chapter 5. Chapter 6 explains the approach to implementation of the IHGC and discusses

various problems encountered. Surprisingly, no major obstructions were encountered, given the IHGC

design has not been verified. Some system level optimisations were required (Chapter 7) but they

are routine; cutting edge hardware design has used such optimisations for over two decades.

With kind permission from Professor David May (University of Bristol), his design for the IHGC

is presented in Appendix A. It has not yet been submitted for publication elsewhere and so cannot

otherwise be referenced. The Verilog implementation, provided with this thesis, and the explanation

of both the design (Chapter 4) and the implementation (Chapter 6), are the original work of the

author of this thesis.

Chapters 8 through 10 evaluate the implementation by comparing test results to both the

feasibility criteria and results of best-case equivalent programs. A secondary outcome is the demon-

stration that realistic programs can compile to the new architecture with minimal change. Examples

of adapted programs and their performance measurements are provided in Chapter 10.

This thesis concludes in Chapter 11 that an IHGC is feasible and has a high chance of significantly

improving performance, energy efficiency and trustworthiness of modern processors. Chapter 12

presents ideas for future work, including formal verification of the design, optimisations, extended

features, and proper error handling mechanisms within the CPU.

3



Chapter Two

Background

Garbage collection is the subject of thousands of papers, books and codebases, so it is difficult to

gain a comprehensive perspective of the topic. As an introduction, the 2016 edition of the book by

Richard Jones et al. is highly recommended.[16]

When considering any GC system, the important aspects are: the algorithm, the application,

hardware and software environments, and any proven advantages or disadvantages. The question of

hardware versus software is important since software problems exist that may not exist in hardware.

2.1 Garbage collection algorithms

There are three classical GC algorithms: Reference-counting, Mark-Sweep, and Copying (largely

unused nowadays for space efficiency reasons). Mark-Compact is slightly more recent, is used by the

IHGC (Chapter 4) and neatly solves two key problems that other algorithms do not: fragmentation

and reference cycles.

Figure 2.1: Reference cycles between tuples

4



2.2. PROBLEMS OF SOFTWARE GC

Fragmentation is small gaps between "live" memory (memory which is still in use) created when

memory is swept ("freed"). Compaction copies live memory to a contiguous region thus eliminat-

ing fragmentation. Reference counting cannot detect reference cycles (Figure 2.1), consequently

"marking" GC is necessary in many applications.

Some Mark-Compact implementations are cache-aware and/or generational. Generational GC

reduces cycle counts and times by minimising the traced heap area. Older objects are assumed to be

live and so are marked/compacted less often. Older objects are typically larger too so generational

GC can reduce the size of memory processed in each cycle.

Lastly, some GC algorithms are distributable meaning the mark, sweep or compact stages can

execute simultaneously on multiple logical processors. In practice, these have been used for "cloud"

servers with large amounts of shared memory.

2.2 Problems of software GC

Software Garbage Collection has five significant problems, Stop the world (STW) conditions, necessity

of read/write barriers and overheads of memory, processing time and cache invalidation.

STW occurs when the GC has to pause the mutator (the program using the GC) to ensure

consistency. Extensive research has developed algorithms to avoid large pause times and some fully

concurrent GC algorithms have been created which avoid all STW conditions, but these require

hardware R/W Barriers (see Chapter 3).

Hardware barriers delay access to memory which is being manipulated, causing short pauses to

the mutator. Real-time performance of hardware-assisted GC has been achieved by tightly bounding

such delays.

Software GC consumes CPU time to execute the collection cycles and requires instructions in

the program to interface with GC software. Furthermore, GC threads interrupting the program

cause cache eviction and loss of out-of-order execution state. The result is bloated program size and

significantly reduced performance, especially on highly pipelined processors.

Money and power are the solutions thrown at applications-scale processors but neither are

acceptable for micro-controller or embedded scales. Any GC implementation also requires memory

for "dead" tuples awaiting collection and tracking object states.

5



CHAPTER 2. BACKGROUND

2.3 Usage and popularity of GC

GC is widely used as it provides a highly reliable memory system, protecting programmers from

common errors. Bugs are also detected at runtime and for some highly modular software, no

alternative memory management is available. Managed memory reduces development time and effort

while increasing reliability and security. Code readability also usually increases, further reducing

development cost. GC underpins so many modern languages that it is almost unavoidable. It is

surprising, therefore, that there is so little hardware support.

2.4 Capabilities and limitations of hardware

Hardware has capabilities which are impossible for software. For example, hardware always knows

the complete state of a system. This is true even for modern C/C++ programs. The dangers of

arbitrarily converting between numbers and pointers have been learned and most modern software -

certainly good, reliable, secure software - carefully distinguishes between them. The memory model

of modern C/C++ is similar to that of C# or Java, so "conservative" GC is no longer necessary.

Hardware implements algorithms more efficiently and thus faster than software. There is greater

scope for clock-cycle-level optimisation and tight integration with the system to maximise throughput

and minimise overheads. For example, compact state machines can be synthesised that execute in

parallel with the main processor, without adverse software effects (see Chapter 4).

Production hardware is unmodifiable (and FPGAs have write-once techniques) but can be

strongly or formally verified. This means a reliable, secure, trustworthy memory model can be

enforced across the system. This is far more trustworthy than any likely software environment.

However, more hardware means higher power consumption, greater cost and potential clock

speed limitations. In the embedded processor market, size, cost and power consumption are the

deciding factors between processors. Implementing and verifying complex hardware is difficult and

mistakes cannot be corrected after final tape-out. Furthermore, hardware operating in a fixed mode

may not be flexible enough so hardware algorithms must be carefully and compactly designed and

implemented. These reasons may suggest why hardware GC is uncommon.

Lastly, it is reasonable to expect that hardware changes will necessitate software redesign. This

thesis postulates three kinds of changes:

Re-write Large parts of software are re-written to fit the new hardware operational model.

6



2.5. EVALUATING GC IMPLEMENTATIONS

Re-compilation Only the compiler needs modification, with minor changes to standard libraries.

Most software only needs tweaking and re-compilation.

Cut-down Large parts of software need modifying to delete superfluous code and to take

advantage of the new hardware. Re-compilation is necessary.

"Cut-down" is considered distinct from "re-write" as less development effort is required. If

the software and hardware operational models match, code can be reduced to hardware calls

(instructions). This is simpler than rewriting to update the entire software design to match the

model used by the new hardware. Chapter 10 shows that only software cut-down is required as the

IHGC uses the same operational model as existing C/C++ software.

2.5 Evaluating GC Implementations

Evaluating a GC implementation is problematic as isolating any variable of performance is impossible.

However, appropriate metrics are useful assessing system and GC performance. The criteria for

feasibility, Chapter 5, utilise some of the common metrics listed below.

Collection time Average and upper/lower bounds of collection cycle time.

Allocation time Average and upper/lower bounds of time for memory allocations. (Careful compar-

ison of allocation times is required as some implementations only allow fixed-sized allocations.

The IHGC allows variable sized allocations, including zero size.)

Access time Average and upper/lower bounds of time to access valid memory. It is sometimes

acceptable to ignore invalid accesses.

Total execution time Average time required for a given program to execute. There are only two

GC benchmark suites (Jikes RVM and Dacapo, no longer maintained) both for Java.[1, 4]

Heap size Maximum size of heap the GC can manage.

Handle count Maximum number of tuples the GC can manage.

Dead memory size Average and maximum amounts of dead memory overhead.

GC memory size Size of memory the GC requires, e.g. for physical addresses of tuples.
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CHAPTER 2. BACKGROUND

Algorithmic complexity No single measure exists; this is not a good performance indicator.

Implementation complexity Similar to Algorithmic complexity but can indicate development cost.

System-wide effects e.g. on caches, out-of-order execution state, memory bus activity, other

programs, physical memory degradation over time, . . .

Capability General or special purpose capability e.g. only usable for JVM or usable for any managed

memory system, e.g. Reference counting vs full Mark-Sweep
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Chapter Three

Prior Work

The IHGC design is so new that there are only two comparable papers (of which one claims to be

the first on this topic), which are discussed at the end of this chapter. The rest of this chapter

provides a comprehensive summary of all relevant publications from the last few decades. There is

incredibly little research into the topic of hardware GC, which is probably because most hardware

engineers have no idea what GC is, and most software engineers invariably prefer software solutions.

It takes a rare breed of engineer to even consider bridging the divide. Nevertheless, hardware GC

has featured occasionally over the last 30 years and a recent increase in papers suggests a chance

that hardware GC might take off.

Past research emphasised three things: Java, Real-time and Embedded (e.g. Ive 2003).[14] This

thesis is no different except that C, C# and Haskell (and other languages) are considered equally

important and worthy of support. Software GC is not perfect but is good enough for applications-scale

use, but in real-time and embedded areas it has never yet proven adequate. Another increasingly

important consideration is energy efficiency, where some research suggests adding more hardware,

to replace complex or frequently used software, can reduce overall energy consumption (e.g. Cao et

al. 2012).[5]

3.1 Theory

There is a lot of theory surrounding GC mostly dealing with two areas: algorithms and software

concurrency. The world has settled on the algorithms mentioned in Chapter 2 but research continues

to find minor improvements. More recently research has focused on concurrent operation with the

mutator with some success. No references are provided here as concurrent software GC differs

significantly from concurrent (true parallel) hardware GC.

One paper from 1995, however, considered whether hardware was required for object-oriented

programming.[13] Interestingly, it concluded that hardware support had little benefit over contem-
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porary heavily optimising compilers. Furthermore, they found that cache hierarchies had a bigger

impact on performance. However, a lot has changed in 20 years. Object oriented languages are far

more prevalent, more complex with higher performance demands and, crucially, we have reached

the limits of current cache memory structures.

3.2 Commercial Solutions

There is currently one commercial solution for hardware assisted GC. The C4: Concurrent Garbage

Collector created by Azul Systems is marketed as the only fully concurrent GC that doesn’t stop

the world. It is a software, continuously-concurrent GC with hardware assistance from a "Loaded

Value Barrier", targeted at the JVM. It has been integrated with X86 hardware and has a maximum

heap size of 670GB. This system is not suitable for embedded or real-time systems and Azul (citing

"practical engineering complexity reasons") have not yet been able to implement the complete

algorithm and so their implementation does stop-the-world for short periods. This thesis makes

practical, full implementation and no STW conditions an explicit target of the IHGC design.

3.3 Hardware Assisted GC

Hardware assistance exists in four forms: memory mechanisms, co-processors, ISA extensions, and

profiling. Memory mechanisms typically either add useful features for software (e.g. read/write

barriers) or implement part of the GC algorithm in hardware. Co-processors are general or special

purpose processors connected via the system bus to the main processor to handle some or all GC

operations. ISA extensions are suites of new instructions for micro-managing memory, cache and

processes. Profiling hardware provides information to facilitate dynamic optimisation of software GC.

3.3.1 Memory Assistance

Higuera et al. considered using hardware read/write barriers to handle the copying/compacting stage

of a concurrent GC algorith, to ensure that the mutator has a consistent view of memory words

while the GC moves them.[12] Although this can be effective for performance, it only addresses the

responsiveness problem.

Memory assistance using reference counting memory mechanisms has been attempted but

is of limited general purpose use as it cannot clean up loops of objects or similar, common
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cases.[8, 15, 26, 31] In 1997, Wise et al. concluded that their hardware reference-counting heap was

the first and showed scientific break-even.[31] They concluded that GC must support parallel systems

and new technologies, or it will fade in favour of alternatives with lower software development

cost, such as C-style memory management. 20 years on, GC has not faded but instead grown

in use, popularity and performance. Their system also targeted on-disk management and utilised

an expensive, offline, software (hardware supported) mark-sweep collector - a heavyweight design

probably not suitable for integration with modern systems of any scale, given the range of storage

technology today.

Hardware support for the copying (or sweeping or compacting) stage of GC has been attempted

and achieved incremental improvements but with no particular breakthroughs.[24, 29] Wright et al

designed an innovative but complex system, using a separate object-only address space.[33] Their

design permitted a fully parallel software GC on multi-core processors or in multi-processor systems

but with at least one dedicated core during mark-sweep. Although retaining software backwards

compatibility, this necessitated significant modification of new programs and the operating system

to utilise the split address space - a significant imposition on software developers. Furthermore, the

design only supported JVM execution, citing the unsafe subset of C# as a barrier. However, they did

show that memory hierarchy modifications can be lightweight and compatible with existing system

design. These are important features if hardware GC is to be adopted by the wider community,

which is justifiably concerned with software redevelopment and backwards compatibility.

3.3.2 Co-processors

A number of co-processor designs have been proposed, including offloading the marking phase to a

GPU.[7, 10, 20, 21, 23, 25, 27, 28] However, co-processor design has many of the disadvantages of

software GC design, in particular, requiring barriers during copying/compacting, achieved with STW

or by hardware support in the main processor (or equivalently, the memory bus). Hard real-time

performance was achievable with these schemes but as Nilsen and Schmidt concluded, the cost of

an entire extra GC module was not outweighed by the performance gain, particularly for multi-core

C++ systems of the time, which could achieve very similar performance levels.
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3.3.3 ISA Extensions

The main work on ISA extensions comes from papers by Chang et al, the most useful being "DMMX

(dynamic memory management extensions): An introduction" in 1999.[6] Unlike any other that this

author has seen in the field of hardware GC, this envisaged a combinatorial logic, bitmap memory

structure to provide constant-time allocation and sweeping. By considering extending an existing

ISA they also hoped to support the Java Virtual Machine in hardware. It is unclear why their work

hasn’t been followed up, though improvements in cache and processor speeds may have made it

seem superfluous. They also amusingly included the prediction "by year 2010, there will be 10 times

more embedded system programmers than general-purpose programmers" by Atherton, 1998 in

their conclusion. Almost the exact opposite has occurred with the web and JavaScript, with fewer

systems programmers than ever. Even the growing IoT market seems unlikely to change this.

3.3.4 Profiling

Heil and Smith created a concurrent GC using hardware-assisted profiling that achieved improvements

upon the standard Java generational GC of the time.[11] However, this expensive in hardware and

offers little benefit compared to effective software optimisation or alternative hardware-assistance

techniques.

3.4 Full Hardware GC

In 2012, Bacon et al developed the first real-time GC fully in hardware using "miniheaps" that

supported fixed-size objects and a stack for the free list.[3] Although a first, as noted by Maas et al

in 2016, it is only capable of special purpose applications on FPGAs, utilising properties of block

RAMs, and requires the mutator program itself to be synthesised to hardware.[19] The design shows

no promise of being expandable to general purpose GC for CPUs or larger scale systems.

Maas et al presented the first, full hardware, concurrent, general-purpose GC targeting servers

(presumably mindful of cloud computing applications).[19] They observed that the current climate

of hardware and software makes it an ideal time to revisit the idea of hardware GC. They adopted

the same principle as the IHGC: that maximum memory bus utilisation will lead to the most efficient

system. But favouring full address bus backwards compatibility and following the same Pauseless

algorithm as Azul’s C4 design, required a read barrier to handle relocated objects. This is a significant
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step forwards for hardware GC but their system, compared to the IHGC, is very complex and requires

significant compiler (and application) modifications.

By contrast, the IHGC recognises that address bus compatibility is unnecessary given current

software design, so much simpler integration with existing CPUs can be achieved.

13



Chapter Four

The Integrated Hardware Garbage Collector

This thesis presents an adapted version of the original IHGC (Appendix A), designed by Professor

David May at the University of Bristol. The design has been integrated with the open-source

PicoRV32 implementation of RISC-V.[30, 32] This chapter describes the design’s operation and

adaptations made to fit the register-based CPU.

4.1 Memory Model

Conceptually, the IHGC is a memory management unit sitting between the processor and main

memory, imposing a new memory model unlike any traditional model. Traditional models view

memory as a randomly-accessible, flat address space. (Paging or segmentation mechanisms may

be layered on top to provide virtual memory.) The IHGC memory model views memory as a

sparsely-connected, unordered space of tuples (objects).

Tuples contain words called fields which contain either plain values or pointers. Only fields can

be accessed and comparing locations of tuples is invalid. Pointers point to fields and consist of a

handle and an offset (split between a word’s upper and lower parts). If the offset is beyond the

bounds of the tuple to which the handle refers, the pointer is invalid. A special nil handle points to

nothing. Two pointers are equal if they point to the same field or to any nil field. New pointers are

formed by allocating memory or offsetting an existing pointer. Bounds checks can be performed at

formation or at access time.

Address buses contain pointers, and data buses contain pointers or values, indicated by an

additional pointer flag bit (called pflag or subscripted as ptr).
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4.2 Programming Model

In practice the memory model presents no challenges to the programming model used in C, C++,

C#, Java, Python, Haskell or other languages. As such, the ISA changes (see Chapter 6) are

seamless for the majority of software. However, untrustworthy software would probably be blocked

but that is a significant motivation for using the design.

The memory model supports general programming but requires that software does not convert

between values and pointers. Such conversions have been gradually phased out of C/C++ program-

ming due to their inherent risk. The ideas for future work (see Chapter 12) suggest an approach to

eliminating all conversions.

4.3 Mark-Compact Algorithm for Garbage Collection

Figure 4.1 and table 4.1 summarise the IHGC Mark-Compact algorithm which has four stages and

two possible interruptions.

1. Root-finding Finding pointers at which to start searching for tuples to mark - taken
from CPU registers.

2. Marking Recursively searching every pointer within every tuple found. Each tuple
found is "marked".

3. Sweeping Marked tuples are compacted (copied) to the bottom of memory. Un-
marked (dead) tuples are overwritten by marked (live) tuples or by
zeros.

4. Finish The end of the live memory is found. The M&S process is reset and
begins again.

A. Allocation The CPU requests a new tuple, interrupting the M&S cycle - blocked
for at most a few clock cycles if enough memory is available.

B. Access The CPU requests a read-from/write-to a tuple, interrupting the M&S
cycle - blocked for at most a few clock cycles.

Table 4.1: Stages of Mark-Compact Algorithm

Root-finding checks for pointers to deep tuples (tuples which contain pointers not just values).

If a non-nil deep pointer is found, it is marked, the tuple’s size is added to livesize and then the

tuple is scanned. Otherwise, the next register is selected (split into marknext).

marknext loads the next tuple’s information and then moves to markscan. Every word of the

tuple is then scanned for pointers, which are added to the marking list using markadd. By the end

of marking, all reachable (live) tuples will have been marked. During marking, the total size of live
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Figure 4.1: The IHGC Mark-Compact Algorithm

tuples (livesize) is accumulated for use during sweeping. marknext detects end of marking and

moves to sweepscan.

marksweep moves from the bottom upwards through memory. All tuples are guaranteed to

appear contiguously from the bottom of memory. src and dest are physical addresses of where to

copy from or clear, and where to write to respectively.

A tuple’s first word is hidden from the CPU and contains its handle (tuples are one word larger

than the CPU requested). Sweeping reads the first word to access the handle and so determine the

tuple’s size. Sweeping compacts live tuples to the bottom of memory. A marked tuple is either left

where it is (if src = dest) or copied from src to dest (sweepread/clear/write). An unmarked tuple

is either within the live size of memory, in which case it is skipped, or it is beyond the live size

of memory, in which case it is zeroed out (sweepzero). If a tuple is marked and copied to lower

memory but the tail of the object is beyond livesize, the extra words are zeroed out (sweepclear).

src and dest are accumulated in complete tuple sizes. The sweep position within a tuple is tracked

by index. Sweeping clears the tuple mark flags and appends dead tuples to the free list.

Allocations and accesses can occur during marking and sweeping, handled by the getmem, read

and write interruption states. Interruptions are blocked until a transition between two M&S states.

The design requires only one directory and/or one memory access per main state. This means the
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blocking time for access and (if the system is not out of memory) allocation is at most the longest

state’s duration, which in practice is very short.

New tuples are initially marked so will not be immediately removed by sweeping. Accesses check

if the tuple is being swept and reads/writes to/from the appropriate place to maintain consistency.

If an allocation request occurs when the system is out of space or handles (OOS or OOH), the

IHGC will block for up to two complete M&S cycles. The second M&S cycle determines if the

system is entirely out of memory.

4.4 IHGC Memory

Main memory contains the tuple space and each word requires an additional bit to indicate if it

contains a pointer or not. In practice approximately 3% extra main memory is required by the GC

for the pflag and per-tuple handle word.

The directory memory, as shown in Appendix A, tracks the size, location and state of tuples,

including allocated tuples and the free handles list. In a 32 bit system with 4GiB main memory

(excluding pflag bits) and 16 bit handles, the directory requires 62 bits per tuple, requiring 496

KiB of high-speed memory (L1/L2 cache). However, with 4,096 handles and maximum object size

of 65,536 bytes, only 27 KiB is required (for 256 MiB of main memory). Future work will consider a

technique for allowing a few large objects alongside many more smaller objects, by splitting the

handle space.
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Chapter Five

Criteria for Feasibility

The IHGC is designed for embedded or micro-controller processors and commercial implementation.

Key aspects are implementation, size and speed, including Worst Case Execution Times (WCETs).

5.1 Size, Complexity and Usage

# Focus Description

1. Complexity Difficulty of correct implementation
1.0 Implementable within 2.5 months by one person working full time.
1.1 Implementable in current versions of HDLs
1.2 Synthesisable using current commercial tools
1.3 Only requires hardware elements that are standard to FPGAs
1.4 Can be integrated with an existing ISA
1.5 Only one additional instruction, for allocating tuples, added to the ISA
1.6 No structural changes required to integrate with a typical micro-architecture
1.7 Necessary system optimisations are similar to commercial systems
2. Size Quantity of hardware required
2.0 IHGC is smaller than the chosen embedded processor (excluding memory)
2.1 IHGC fits onto a low-end FPGA with the CPU core and memory
2.2 Equivalent GC/non-GC programs execute with same size of main memory
3. Software Required software changes to execute programs on the new system
3.0 Only cut-down modifications to existing C programs
3.1 At most re-compilation and minor re-write of the C standard library.
3.2 No changes to C-based software programming or memory model.
3.3 No necessary compiler modifications.
3.4 No reliance on non-standard or not best-practice software design.

Table 5.1: Complexity, size and software feasibility criteria
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5.2. RESPONSIVENESS

Note: Energy consumption is ignored since accurate energy estimates require optimisation of

the system and an FPGA implementation is not representative of energy consumed by an ASIC

implementation.

5.2 Responsiveness

Response times refer to the time taken to process a response once the GC is ready to do so. Response

time does not include blocking time, which is covered in "overheads".

# Focus Description

4. Allocation Time taken to allocate a new tuple
4.0 GetM instruction is faster than smallest-possible, equivalent C malloc routine
4.1 GetM is tightly bounded
4.2 GetM faster than software GC allocate functions (e.g. in C#)
4.3 GetM operates regardless of CPU state (e.g. during interrupts)
5. Access Time taken to access memory of a tuple
5.0 Memory access within 5 times max. speed for the memory type

(BRAM/SRAM/DRAM).
5.1 R/W time is within 2 orders of magnitude of comparable real systems

(Expected improvement from optimisation and FPGA vs. ASIC implementation)
5.2 R/W time is tightly bounded
5.3 R/W time is within 2 orders of magnitude of cutting-edge systems

Table 5.2: Responsiveness feasibility criteria
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5.3 Overheads

Out of Memory (OOM) refers to either being Out of Handles (OOH) or Out of Space (OOS).

# Focus Description

6. Allocation Time spent blocking before a GetM request is processed
6.0 GetM only blocked for more than 1 M&S state transition when OOM
6.1 GetM blocked for at most 1 M&S state transition when not OOM

(Both 6.0 and 6.1 are necessary given possible error cases).
7. Access Time spent blocking before a R/W request is processed
7.0 R/W requests only ever blocked for at most 1 M&S state transition
7.1 R/W requests never blocked for longer than max. time taken for a

R/W request
8. Space Additional memory required compared to a non-GC system
8.0 Directory memory uses similar space to L1 or L2 cache sizes
8.1 Additional main memory per tuple is at most 1 word
8.2 Additional main memory per word is at most 1 bit
8.3 Live size for an IHGC-based program is never greater than its best C

equivalent (excluding extra word per tuple)
8.4 Heap point is approximately 10% larger than live size under

worst-case conditions.

Table 5.3: Overheads feasibility criteria
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5.4 Scalability

Capability of the GC to scale from small to large embedded/micro-controller systems - applications

scale is not considered in this thesis.

# Focus Description

9. GC Operation Handling varying GC pressure levels
9.0 GC continues to complete M&S cycles at any pressure level
9.1 M&S time is tightly bounded
9.2 M&S time is proportionate to R/W/GetM frequency/size
9.3 M&S only stalls (STW) if OOM and a GetM is waiting
9.4 M&S time is predictable
9.5 Consistent operation across range of GC utilisation for a given program
10. Memory Managing different sizes of memory
10.0 Number of memory accesses is proportionate to number and size of tuples
10.1 Directory memory size is proportional to number of tuples
10.2 Memory for dead tuples is proportional to creation/death rate
10.3 OOM condition(s) are predictable and calculable for a given program in

a uni-processor, single-thread system.
11. CPU Speed Handling higher CPU speeds
11.0 Longest path shows potential for optimisation to faster clock speeds
11.1 GC clock speed can be the same as CPU clock speed (or faster)
12. CPU Efficiency Handling varying memory bus utilisation levels
12.0 GC can operate under maximum CPU-IHGC bus utilisation
12.1 GC slows max. bus speed by at most 1 order of magnitude
12.2 GC correctly handles simultaneous GetM and R/W requests
13. Caches Compatibility with cache hierarchies
13.0 L1/L2 caches can be placed between GC and CPU core
13.1 L3 cache could be placed between GC and main memory
13.2 Cache is not required for GC to meet other criteria (excl. directory)
Total 51 criteria

Table 5.4: Scalability feasibility criteria
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Chapter Six

Approach to Implementation

This chapter presents the approach to implementation of the IHGC (in bottom-to-top fashion), the

system and the software benchmarks. Tight bounds for the IHGC are calculated and compared to

the feasibility criteria.

The implementation is at Research Demonstration Level, using Feldman’s technological maturity

scale.[31] Future work could certainly improve upon the tight bounds, compactness and elegance of

this implementation. This is a proof of concept, created in a limited time with little attention given

to clock-cycle optimisation. The implementation’s code and all original software is provided with

this thesis.

6.1 The IHGC

6.1.1 Design and Implementation

For simplicity, and to demonstrate the portability of the design, the IHGC was implemented in a

single, independent file forming a single Verilog module. Within this there is the main state machine

and a few, very small supporting ones. In addition, a number of wires are created to help maximise

re-use of common combinatorial expressions.

The design has 80 registers of varying sizes, many being only a few bits wide. In general, a

one-hot encoding is used for the states of the state machines. Most of the additional registers not

part of the original design (Appendix A) are used by the statistics gathering/outputting or are state

registers.

Optimisation of the tasks for accessing memory and the directory is an important area of future

work. At present, there is an inessential one clock cycle gap between every memory or directory

access. Splitting the tasks into "begin" and "end" tasks would sometimes save up to 4 clock cycles.

To support the full reset mechanism for the test framework, the init state was added to the main
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state machine. This state clears all of memory, excluding the program, and initialises the directory to

a clean state that includes a program object (guaranteed to be handle 0). This significantly impacts

the system start-up time but could be optimised in future work.

The main state machine has four possible routes on each clock cycle: Reset, GetM, R/W, or

M&S. GetM is an interruption state that responds to an allocate memory request from the core.

R/W are also interruption states and handle a read/write requests. M&S is the default case and

executes the main states of the GC state machine.

Interruption states only occur when the main state machine transitions from one state to the

next. Some of the main states have internal state machines which can loop on themselves, in which

case, special provision is made for interrupting these internal loops at a safe moment.

There are 11 main states each of which follows a similar pattern. Firstly, any conditions which

choose the action of that state are evaluated. Then a read or write is performed and the state waits

for it to complete (by checking ∗_ready). If a second read or write is required, a sub-state-machine

is used to control the order. There is a one clock cycle delay between the first and second read or

write that could be eliminated, but was useful for debugging. Lastly, registers are updated including

the msm_state register. Sub-state registers are also reset for the next cycle.

Livesize is updated by setting the add or set registers and toggling the respective do bit.

The wires for values read from main memory or the directory automatically switch between

current and cached values according to the ∗_ready signal, making it simple to use the signals in

the main state machine. A write to memory does not alter the cached read values.

To aid debugging, $display statements are placed in every state and some key sub-states so

that during simulation, lock-ups and incorrect progressions can be seen. These do not affect the

synthesised design.

Memory is byte addressed so many of the address signals are left-shifted by two to translate

from a word address to a byte address.

The original design was for a stack-based machine. However, the implementation in this research

was for a register-based machine, so a good first-attempt was made to adapt the design. In the vast

majority of cases, the implemented design functions correctly. However, there is a known rare case

in which tuples may be swept too early. A program which builds a linked list, then, starting from the

top of the list, rapidly loads a pointer to the next element into a register, then clears the link pointer

in memory, discards the parent element pointer, and repeats this down the list, may cause the IHGC
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to discard the entire list early. This is because the chain that the marking process is attempting to

follow is broken before it can mark the complete chain, but the IHGC does not re-scan registers to

check for new possible root pointers. However, the author expects such a program to be extremely

rare, certainly inefficient and very likely to be optimised away by compilers.

In hardware-assisted GC systems the case described is usually avoided by marking the tuples of

overwritten pointers or of pointers read from memory. Typically this is implemented using a read or

write barrier. Bacon et al used a read-before-write mechanism and marked overwritten pointers.[3]

However, this is not necessary as an alternative solution is already known. Future work will show

that it is sufficient to simply iterate over the CPU’s registers until the tuples of all pointers in the

registers for a given snapshot are marked. This can be shown to always terminate and is likely to

have the same M&S WCET as the current design.

6.1.2 Evaluation

The criteria for feasibility place a number of requirements on the implementation which are evaluated

directly from the code and synthesis reports.

Items 1.0 to 1.3 are satisfied by the Verilog implementation that was created from February to

April 2017 by this author, working approximately 5 days per week for 7.5 hours a day.

6.1.2.1 Synthesis Criteria

Synthesis reports show that around 9% of FPGA logic cells are consumed and 55% of the block

RAMs. Of this, 4̃8% is the processor and 5̃0% is the IHGC. The remainder is used by the system

and memory. The IHGC includes the statistics gathering and output hardware as well as some debug

mechanisms. Overall, the IHGC meets criteria 2.0 and 2.1.

The IHGC is synthesised with the rest of the system to use the same global clock signal as

the CPU, thus satisfying 11.1. The size of the directory is given by equation 6.1. This shows that

criterion 10.1 is met.

size =
(address_size+ handle_size+ length_size+ 2) ∗ handles

8
(6.1)

size is in bytes, address_size, handle_size and length_size are in bits and handles is the

maximum number of handles. An example calculation is provided in appendix C. A typical real-

time, embedded processor, such as the ARM Cortex R4 1, has between 4 and 64KiB of L1 cache
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memory.[2] For a 32-bit word size, 65kWords main memory, 16-bit handles and maximum 4096

handles (determined by number of directory entries), the directory size is 23KiB, satisfying criterion

8.0.

The design does not require a specific size of main memory as this is specified as a parameter

to the IHGC. For every allocation requested, the actual size allocated is increased by one word. The

additional word is used to hold an immutable copy of the reference for that tuple. Thus at most one

additional word is used per tuple, satisfying criterion 8.1. The IHGC design also requires a flag for

every word in memory indicating whether that word contains a pointer or not (mempflag - pflag is

used instead of ptr as in the original design in order to reduce confusion when reading the code).

The pflag can be implemented as a single bit per word, thus criterion 8.2 is satisfied.

6.1.2.2 Functional Criteria

The IHGC module is able to mark, sweep and respond to read, write and GetM requests independently

of the processor core’s state. This satisfies criterion 4.3 and is an important feature of the IHGC. In

particular, it enables the core to allocate memory during interrupt requests, an extremely useful

feature and apart from exceptional cases, not possible in any current system. This feature opens up

a realm of new possibilities for software design, especially operating system and device driver design.

The code in "gc.v" (attached with this thesis) contains the code which controls when the main

state machine should be interrupted to handle a read, write or allocate request.

is_safe_to_jump_state consists of 3 conditions. Firstly, there should be no ongoing directory

or memory access - these only happen during a M&S state or an interrupt state and are entirely

contained - these conditions are not strictly necessary. Secondly, the IHGC should not be initialising

- this will occur once at reset and msm_state = previous_msm_state. Lastly, the main state

machine should have just transitioned from one state to the next. However, this last condition

is extended as several of the states are able to loop on themselves. The extra conditions enable

interruption between the start and end of such a loop.

out_of_handles and out_of_space indicate whether the IHGC has run out of memory to

allocate. Out-of-handles is detected by the free list being nil. Out-of-space is only valid when a

getm request is being made and detects whether there is sufficient space left in the heap for the

allocation to be made - a simple overflow check is also included.
1ARM and Cortex are trademarks or registered trademarks of ARM Limited (or its subsidiaries) in the US and/or

elsewhere.
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do_getm and do_rw control whether their respective requests should be handled or not.

doing_action ensures that the handler continues after its first clock cycle. GetM is always handled

before RW (criterion 12.2). do_getm will only become true when it is safe to interrupt the main

state machine and a getm request is being made. This will block for at most one M&S state if the

IHGC isn’t OOM (criterion 6.1). Otherwise, it will block until memory is available (i.e. a M&S cycle

has occurred) and it is safe to interrupt (criterion 6.0). do_rw becomes true when it is safe to

interrupt and an R/W request is being made. Thus R/W only blocks for at most one M&S cycle -

criterion 7.0.

Criterion 9.0 requires the IHGC to continue to execute M&S cycles even under high pressure

from the processor core. In this context, high pressure means when the core is making R/W/GetM

requests as fast as possible (which can be achieved by holding the respective Valid signal high

continuously). This requires that between each request, at least one main state executes. A request

can only begin to be handled when the main state machine has transitioned between two states (i.e.

a main state has been executed) or one of the single-step main states is looping on itself. However,

the extra ! ∗ _ready conditions ensure that one clock cycle is available between requests for a

single-step main state to start executing thus blocking the next request until at least one main state

has executed. In the case that the processor issues GetM and R/W requests simultaneously, the

clock cycle gap is not created. Thus criterion 9.0 is not fully satisfied. However, it is reasonable

to expect that such a case will not occur with an unpipelined processor. Furthermore, it would be

trivial to fix this case as described in future work.

Criterion 9.3 requires that the IHGC only stalls when it is OOM and a GetM request is waiting.

The IHGC code ("gc.v":1353-1381) shows that OOM is only asserted when a GetM is waiting and a

full M&S iteration has been completed with insufficient memory becoming available. Additionally,

this is the only condition which may stall the main state machine. The interruption states may stall

due to nil pointers or out of bounds accesses, which are not handled in this implementation. Full

error handling will be explored in future work.

6.1.2.3 Temporal Criteria

R/W is only blocked for at most one M&S cycle. Therefore, the tight upper bound on R/W blocking

time is the maximum duration of any M&S cycle, plus the interrupt transition time. Appendix D

presents clock-cycle-accurate overview flow diagrams of all the states of the IHGC and of memory
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accesses. These show that the longest M&S state is sweepscan lasting at most 11 clock cycles. The

tight upper bound on R/W blocking time is therefore 12 clock cycles. The R/W response time

is max. 17 clock cycles for write and 7 clock cycles for read (for a valid pointer). Thus the tight

upper bound (WCET) on any valid read/write request is 29 clock cycles, meeting criterion 5.2.

Cutting-edge, real systems, generally have memory latencies of between 4 and 100 clock cycles. 29

clock cycles can be optimised further (as is evident from the wasted transition cycles shown in the

diagrams) and is within 2 orders of magnitude of real and cutting edge systems. All this shows that

criteria 5.1, 5.3 and 7.1 are met.

GetM has two interesting upper bounds; one when the system is not out of memory and the

other when it is (and a M&S must occur to clean up dead memory). The case when the program

tries to allocate more live memory than the heap has available is ignored. If the system is not out of

memory, the upper bound is one M&S state plus transition plus response, which Appendix D shows

is max. 28 clock cycles. If the system is out of memory, then the longest possible route through

M&S must be considered.

The longest possible GetM blocking time occurs when the GetM is blocked by the mark and

sweep cycle(s). The following proof provides the WCET for a single M&S cycle when the IHGC is

blocking a GetM request during sweeping (but not necessarily during marking).

1. There are two phases to the algorithm: Marking and Sweeping.

2. If a tuple is not "deep", the marking phase does not scan it. So for WCET we assume all

tuples are "deep" (for example, they all contain a valid pointer or the NIL pointer). We also

assume no tuples are marked at the start of the marking phase.

3. For the first part of the proof, it must be noted that the number of memory operations per

word of the heap is one of the two determining factors on M&S time. The second factor, used

later, is the structure of the live tuples.

4. By the end of the Mark phase, there will be h words in the heap.

5. Of the h words, l of them will be live and so will have been read during marking.

6. During sweeping, at most l words will be moved by reading then writing them.

7. During sweeping, h − l words will be zeroed, either by clearing just after reading or after

compacting finishes.
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8. Both the sweepzero state and the sweepclear perform a single memory write and no other

operations. As such, in a good implementation, they should take the same length of time and

so the operations can be considered together rather than independently.

9. Thus at most l + (2 ∗ l) + (h− l) memory operations will occur, provided that at least one

dead word is beneath the live words (i.e. l < h). In simplified form the equation is (2 ∗ l) + h,

provided l < h).

10. Thus for WCET, we require maximum l and h, with one word of dead memory at the

bottom-most address. This corresponds to all but Word 0 being live.

11. The marking phase marks every available tuple in the system. Marking takes longest when

all possible tuples are allocated and form a linked list. This is because the algorithm is a

breadth-first search for tuples and so linked lists cause the longest route through the marking

states. It takes longer to markscan → markadd than to markinit. In other words, marking

a tuple of a pointer found in another tuple, takes longer than marking one found in a CPU

register.

12. Figure 6.1 shows the memory layout for Mark and Sweep WCET.

13. Based on this diagram, the route through the M&S states is derived. Using the clock cycle

bounds for each state provided in appendix D, the following equations for M&S WCET are

derived.

14. Tms−wcet = Tmarkinit−markable + Tmarknext−notnil ∗ (N − 1)+

Tmarkscan−readmem ∗ (M −N − 1) + Tmarkadd−notmarked ∗ (N − 2)+

Tmarkscan−endandcurrentisnil ∗ (N − 1) + Tmarknext−nextreg ∗R+

Tmarkinit−notmarkable ∗ (R− 1) + Tsweepscan−deadandinsidelivesize+

Tsweepscan−liveandsrcnotdest ∗ (N − 1) + Tsweepread−notend ∗ (M − 3)+

Tsweepwrite ∗ (M − 3) + Tsweepread−endoftuple ∗ (N − 2) + Tsweepclear+

Tsweepread−swepeend + Tsweepend

15. Tms−wcet = 22N + 11M + 3R− 41

16. Thus for 65,536 words of main memory (M), 4,096 handles (N), and 32 CPU registers (R),

the WCET in clock cycles is: 811,063 clock cycles
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Figure 6.1: Memory layout for WCET of Mark-Sweep when blocking GetM during sweeping

The following argument extends upon the proof above to give the Worst Case Blocking Time

(WCBT) of a single GetM request.

1. Assume a memory structure as shown in the previous proof.

2. The IHGC marks the pointer in register 0 but does not yet process the rest of the linked list.

3. The CPU now loads Ptr to T2 from T1 into register 0.

4. The CPU now makes a GetM request for 2 words.

5. The IHGC now proceeds with marking and sweeping. At the end of the first mark-sweep, only

a single word (T0) has been freed, so the GetM request is still blocked.

6. The IHGC now performs a second mark-sweep cycle.

The memory layout is exactly the same as the first time, only with 1 handle free (T0) and the

top-most word of memory free.

This time, the CPU cannot unlink T2 from the top of the list because it is still blocked by its

previous GetM request.

The second mark-sweep frees T1, freeing a second word of memory.
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7. The heap-point is updated in sweepend.

8. 2 words of memory are now available and so the GetM request is processed.

The WCBT of GetM is thus "1 M&S of maximum sized heap", and "1 M&S of max. heap minus

1 and 1 tuple free". Thus the WCBT of GetM is: 811, 063 + 811030 = 1, 622, 093 clock cycles (at

100MHz, 16.22ms). In practice, it is exceedingly difficult to produce this case with a real program

(even one designed to produce the desired situation). Additionally, the system designed here always

keeps the program object live and at the bottom of memory, so the WCET and WCBT would also

be reduced.

If the processor attempts both a read/write and a GetM request simultaneously, the GetM will

be handled first, so the WCET of GetM remains the same. The R/W will be blocked for at most:

GetM plus one transition time plus another M&S state plus another transition time, which is at

most 24 clock cycles on top of the GetM, so the WCET of R/W becomes 41 clock cycles (ignoring

the GetM). However, the original IHGC design does not expect to handle simultaneous R/W and

GetM requests.

The WCET for M&S and the WCBT for GetM are both tightly bounded in all cases, so criteria

4.1 and 9.1 are met. Additionally, since the amount of memory that has been allocated directly

controls the M&S time (l in the proof of WCET above), criterion 9.2 is met.

Lastly, the longest path through the M&S does show some potential for optimisation to faster

clock speeds and for cutting out clock cycles entirely. Thus criterion 11.0 is met.

6.2 Choice of CPU ISA & RTL

A primary aim of this thesis was to demonstrate that the IHGC can be integrated with a real ISA

with little modification to existing, working RTL. However, there was also a tight time constraint

on the project. It was also desirable to choose an open-source ISA which would allow the full IHGC

and ISA modifications to be published for wide review and hopefully, commercial use.

Three ISAs were reviewed: ARM-v8, MIPS32, and RISC-V (32-bit). These were chosen as they

are the only widely used ISAs (RISC-V has had a growing userbase in the last few years). RTL code

was only available for a MIPS32-based processor and various versions of RISC-V processors. MIPS32

was not chosen because the RTL obtained for the MIPS32 processor was too large and complex to

be sufficiently understood in the time available (as it was for a full, commercially-available processor).
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Additionally, modifications to the ISA could not be publicly released under the license agreement.

Thus RISC-V was the only remaining option.

There are a number of good RISC-V implementations available open source: Rocket, VScale,

Pulpino and PicoRV32. Each of these was reviewed. Ultimately, PicoRV32 by Clifford Wolf was

chosen for its small, easy to understand design, use of Verilog and restricted feature set. The version

of PicoRV32 chosen was the latest available at the time (commit a2107e[32]) and implemented

only the core integer instruction set of RISC-V - sufficient for demonstration purposes. It could

also be synthesised to a variety of FPGAs and using a variety of design tools. This research added

support for the Zedboard (Zynq-7000) FPGA using Xilinx Vivado 2016.1 WebPACK Edition.

6.3 Integration

The IHGC design is integrated at Instruction Set Architecture (ISA) and micro-architectural levels.

ISA level requires the addition of a GetM instruction and modification of existing arithmetic and

logical instructions to correctly handle combinations of pointers and values. Move, branch and

special instructions may need to be modified to throw relevant errors but otherwise remain the same

and so were ignored in this implementation. Micro-architectural level requires the addition of the

pointer flag bits to the registers and memory interface, along with the updates required to support

the ISA changes.

These changes were applied to the PicoRV32 design. No formal new version of the RISC-V ISA

was created (because of time constraints, though this should be done in future work). The following

changes were applied:

1. The arithmetic operations + and − were modified to prevent adding two pointers together.

Further, two values are added as 32-bit values, but when adding a value to a pointer, only the

offset is added to - the handle portion is preserved.

2. The logic operations == and <unsigned were modified to allow only comparison between two

values or two pointers. In the case of two pointers, the handles are compared for equality and

the offsets are compared either for equality or less-than (unsigned) respectively.

3. Extra flag registers were added to signal error conditions, such as adding two pointers or

adding oversized offsets. This is to demonstrate such error checking is possible, but this
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implementation did not add the code required to jump to the CPU’s trap state in the event

of such an error.

4. An extra bit was added to each of the internal registers to act as the pointer flag (except pc

and sp which must always contain pointers).

5. The memory interface for reading and writing was updated to include the pointer flag.

6. The GetM instruction was added. It accepts a single source register - the size of the new

allocation in words - and a single destination register (which can be the same register as the

source) in which the new pointer will be stored.

7. For testing purposes, an OUT instruction was added and is described in the Testing Framework

subsection below.

To make the code easier to navigate, the original, single file was split into three files, with the

two new files containing the memory interface and decoder modules respectively.

The details of exception handling have not been tackled in this project but could be handled

by any of the current standards for hardware exception handling (such as traps, JTAG debugging,

halting the current process, etc.). Further research at the University of Bristol is creating a better

way of handling hardware exceptions cleanly and in a software-model-compatible manner.

6.4 Compiler and Program Modifications and Testing Framework

Minimal changes are required to existing C programs in order to make use of the new architecture.

The assumption is made that the programs are well formed - in essence, the programs do not

arbitrarily convert between numbers and pointers. Though this used to be very common, especially

in embedded programming that uses fixed/pre-allocated addresses for everything, in the author’s

experience it is now restricted to device addresses. Future work will explore a method for dynamically

allocated device addresses or for allowing conversion of device address to a memory mapped pointer.

Converting a program which conforms to the basic requirement is achieved by "defining" (e.g.

#define in C) the malloc function to be the new GetM instruction and free to be no function at all.

The GetM instruction can be added by defining it in an assembly code file. No modifications to the

compiler are required nor to the main program code. The rules for pointer arithmetic enforced by
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the architecture are compatible with well-formed programs in C and C# and with all programs in

Java, Haskell and other OO languages. The design meets criteria 3.0 to 3.4.

To facilitate testing, an out instruction was added to the ISA. This outputs the lowest byte from

the source operand register over the UART.

Significant hardware support was added to the system for testing. The IHGC includes fully

automatic statistics gathering which are automatically outputted over the UART when the CPU

traps or when the IHGC hits a terminal OOM condition. Furthermore, the system is capable of

downloading a program over UART, setting up the program object in memory, resetting the IHGC

and CPU core, then executing the program. When the program completes, the IHGC and CPU are

reset again and the program executes again. This repeats for a third time before the system returns

to waiting for a program to be uploaded. When a program is being uploaded, each byte is echoed

to allow the uploader to confirm it was correctly received. This was necessary because the simplest

version of UART was used, meaning that sometimes bit errors would occur.

A simple C# program for a Windows host computer was developed to automatically upload

each program from a list of tests. Upload errors were automatically detected so if a test failed to

upload correctly, the test software would restart at the last test which failed and continue. The

statistics output from each of the three iterations of each test were automatically saved to machine

readable files for use in Matlab graph-plotting scripts. Human readable log files and versions of the

statistics were saved to log files and printed to the screen to allow live monitoring of results. The

Matlab scripts would automatically exclude results for tests which failed to upload correctly or which

hit a terminal OOM condition. In the latter case, the test would be highlighted to the Matlab user.
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System-level Optimisations

A number of system-level optimisations were required in order for the IHGC to behave correctly. The

optimisations required were chosen by simulating the first version of the system and targeting the

largest areas causing performance problems. Figure 7.1 shows the results of the simulation without

optimisations.

The 63 clock cycle period in Figure 7.1 shows 3 memory requests from the processor core (orange

signals). These are instruction fetches which occur prior to every instruction being executed as the

core has no pipelining and only 1 prefetched word. The blue signal shows the state of IHGC. In this

early version, R/W Requests were handled as a separate state. The yellow signals show requests

going to main memory and the pink signals show requests going to the directory. Every instruction

is one word in size and a fetch is performed for every instruction, so the core makes rapid requests

to the GC with only a 3 clock cycle gap between each fetch. In this 3 clock cycle gap, the IHGC is

only able to complete a single memory request and it has to block the next R/W request for 5 clock

cycles.

The biggest area to optimise was the frequency of memory accesses, the majority of which were

instruction fetches. Two optimisations were used. Firstly, Compressed ISA support was switched on

Figure 7.1: System simulation without Compressed ISA or an instruction cache
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Figure 7.2: System simulation with Compressed ISA and without an instruction cache

(along with the required, extra 16 registers and recompiling the test programs). This reduced the

majority of instructions to half-word size meaning two instructions could be fetched per memory

access. The effect of this is shown in figure 7.2.

Figure 7.2 shows that the frequency of memory accesses remained the same in the worst case

(when non-memory-access instructions were being executed) - 3 per 63 clock cycles. The gap

between fetches grew by 2 clock cycles and the blocking time on each R/W request was reduced

but it was still larger than the 5 clock cycle gap between fetches. The Compressed ISA significantly

improved code density but greater performance was required, so an instruction cache was considered.

A 2KiB, direct-map, read-only instruction cache was added to the system designed to cache the

tuple with handle 0 (which is guaranteed to be the program object in this implementation). This

results in each instruction being fetched through the IHGC only once. All subsequent fetches are

handled by the cache and never reach the IHGC. This frees up a large number of memory cycles for

the IHGC and was sufficient to allow it to complete M&S cycles.

Compressed ISAs are commonly used in embedded and real-time systems, as are instruction

caches. Types of cache vary but typical sizes are between 4KiB and 64KiB. Therefore, the 2KiB

cache created here is reasonable. Furthermore, although it is a direct-map, read-only cache, there is

nothing to suggest that other types of cache wouldn’t work. Other caches may result in a lower hit

rate thus slowing the IHGC, but the IHGC will still continue to work. Thus criterion 1.7 is met.

The use of the instruction cache also demonstrates that traditional cache mechanisms can be
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adapted for the new memory model. This means criterion 13.0 is met. Furthermore, the IHGC

accesses main memory in the same way as any other MMU, so criterion 13.1 is met.

However, the IHGC cannot function properly if every memory cycle is used by the core. This

suggests that for applications-scale processors (which are highly pipelined and designed to maximise

memory bus utilisation) the IHGC would require a different design capable of dual memory access.

Avoiding every memory request reaching the IHGC in this system required an instruction cache and

so criterion 13.2 is not met.
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GetM comparative performance

A primary function of the IHGC is to allocate memory. This is implemented through a new instruction

called ’GetM’. This instruction allocates new tuples that are multiples of the word size (including

zero-sized objects). GetM can be implemented as a direct replacement of standard allocation

functions such as ’malloc’ in many C standard libraries.

In this chapter the performance of the GetM instruction is compared to several versions of

standard allocation functions. Firstly, a simple implementation of C malloc is compared by executing

two equivalent programs on the IHGC system. The first version fully uses the IHGC and GetM, the

second simply allocates a very large object using GetM and uses it as an ordinary heap.

The GNU Standard Library, Java New Object and C# New Object implementations are then

compared by analysing the instructions generated at compile time.

8.1 Simple C malloc

The GetM instruction allocates new tuples that are guaranteed to contain only zeros marked as

values. The equivalent C program ("simple-malloc.c") was implemented as a simple stack-based

heap which can be ’tagged’ at one point and then reset to that point later on. Resetting also zeros

out all cleaned up memory, in order to produce the same behaviour as GetM.

Note that the conversion from 0x0FFE0000 to a pointer is possible only because the hardware

implementation does not check the pointer flag properly. This is because error handling has not yet

been implemented. Future work would implement error detection and handling and thus prevent this

test from working. The tuple is pre-allocated in assembly code so the handle 0x0FFE is available.

These routines compiled with option ’-Os’ produced the assembly code provided in "simple-

malloc.s". There are 35 instructions which contrasts with the one instruction required for GetM. In

addition, GetM can be inlined with the main code which cuts branch instructions and allows it to

be predicted over by the compiler and processor.
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Figure 8.1: Ring network of depth 3 and ring size 4

Reducing instructions reduces instruction fetches but when using GetM, it also cuts the time be-

tween GetM instructions, which can put greater pressure on the IHGC thus reducing the performance

benefit.

The effect of GetM vs. such a simple C malloc is difficult to predict since using GetM requires

the IHGC to garbage collect, which introduces blocking times. However, simple C malloc requires

more instruction fetches, branches and sequential writes to zero-out memory.

The two equivalent programs were run on the hardware as described. The programs create a tree

of doubly-linked rings of nodes as shown in figure 8.1. The results in figure 8.2 show the variation

as the number of nodes is increased by increasing the depth of the tree or the size of the rings.

Graph (a) shows that the execution time of the program using GetM is consistently faster than

the simple C malloc version. Graph (d) appears to show the r/w blocking time growing linearly,

however, as has already been shown in Chapter 4, the blocking time for read and write is upper

bounded. It is important to note graphs (d) and (e) show that the read and write times for simple

C malloc are faster than that of GetM and do not grow, thus simple C malloc is not being slowed

down by the IHGC.

Graph (b) shows that the average blocking time for the program using GetM is slower than

Simple C Malloc (which makes only 2 allocations). However, it grows only very slightly (despite

the increase in M&S time - see below). This means the overall execution time is not significantly

lengthened by the IHGC blocking GetM requests.
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(a) Average execution time (b) Average GetM blocking time per allocation

(c) Average mark & sweep cycle time (d) Average read/write blocking time per request

(e) Average read/write response time per request

Figure 8.2: GetM vs Simple C Malloc on FPGA hardware
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Graph (c) shows that the M&S time for the GetM-based program is of a similar order of

magnitude to simple C malloc version. There are two counter-balancing differences that cause this.

Firstly, simple C malloc uses a large object for the heap which is not tight to the actual size required,

meaning initially more memory is being marked and swept in each cycle thus the base time for

M&S is longer. However, the linear increase in M&S time is caused by the number of pointers being

found during marking. In the simple C malloc version, many pointers to the heap object will be

found and added to the mark queue. The more nodes there are, the more pointers in the heap (to

the heap), so the longer the mark time. In the GetM version, pointers are properly cleaned up and

only the necessary live ones are found each cycle thus reducing marking time. The overall effect on

the two M&S times is that they end up roughly the same. However, M&S time does not affect the

total execution time of the simple C malloc version, as has already been shown.

8.2 GNU Standard Library C malloc

There are many implementations of C malloc in existence. dlmalloc and ptmalloc2 are among the

most commonly used because of their use in the main Linux kernel. The majority of Linux programs

now use ptmalloc2 or its derivative in glibc. However, ptmalloc2 is specifically used for its threading

support and has a complex ’arena’ system. It is not comparable to the IHGC, single-threaded system.

Therefore, the single-threaded dlmalloc implementation is used for comparison here.

dlmalloc stands for ’Doug Lea’s Memory Allocator’ and is a variant of the dynamic storage

allocation algorithm described by Knuth in the Art of Computer Programming.[17] The algorithm

has been popular for a long time, as noted by Chang et al.[6] The algorithm allows for variable

size chunks which are pre- and post-fixed by the size of the chunk. The algorithm also handles

fragmentation by allocating larger chunks than requested if necessary and by occasionally compacting

(consolidating) chunks when necessary. Additionally, dlmalloc has been used in many embedded

applications. These are very similar operation features, overheads and use-cases to the IHGC and so

is a fair basis for comparison.

In total, the malloc function of dlmalloc compiles to 1,159 RISC-V Integer-only, Compressed

ISA instructions (when compiled with -Os to optimise for size and inlining has been allowed).[18]

A copy of the assembly code for the malloc function is provided with this thesis. It is beyond the

scope of this thesis to try to evaluate bounds on how many of these instructions may need to be

executed in best, average or worst scenarios. However, it is apparent from the instructions that at
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least 40 and possibly up to several thousand instructions may need to be executed per allocation.

It is clear, therefore, that the GetM instruction provided by the IHGC is capable of cutting

hundreds of instructions (including many branches) and thus saving a lot of time. Furthermore, the

dlmalloc implementation has a minimum allocation size of 8 bytes (by default) and an overhead

of 2 words per allocation. In comparison, the IHGC has a minimum size of zero (with none of the

normal risk associated with zero-sized objects) and an overhead of one word per allocation (in main

memory). The IHGC’s directory memory adds between 4 and 8 bytes per allocation (depending

on system design) but these are considered offset against the removal of typical virtual memory

hardware structures such as page tables. Nevertheless, even including the directory, the IHGC has

much higher performance and lower overheads than dlmalloc.

This comparison is not quite representative though, since the malloc routine of dlmalloc does

not initialise allocations to zero. The calloc routine must be considered to compare this functionality.

The calloc routine sequentially clears memory using memset but otherwise is simply a wrapped call

to malloc. However, memset clears memory sequentially which uses up processing time for the main

application. In contrast, the IHGC clears memory in the background (in advance of an allocation

request) thus hiding the time required. Thus the IHGC is significantly faster than the common

standard C equivalent.

8.3 C# and Java New Object

A comparison to the C# and Java high-level "new object" instructions is almost impossible because

of the extreme complexity of the two runtime environments. It is revealing, however, that the main

GC file for C#’s Common Language Runtime available open source on GitHub ("src/gc/gc.cpp"[22])

is nearly 37,000 lines long and accompanied by numerous other files. There are numerous allocate

functions and hundreds of backing functions for managing generational GC. In contrast, the IHGC

module is 1,814 lines of Verilog including the complete interface and statistics gathering. The

IHGC can also be relatively simply extended to include generational garbage collection, without the

addition of thousands of lines of code, as will be shown by future work. It is apparent, therefore,

that the IHGC is a significant simplification on state-of-the-art software implementations yet is able

to retain high performance - real-time performance is better than C# is currently able to achieve.
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Characteristics of GC performance

Software GCs dynamically respond to mutator demand and are subject to interference from many

parts of a system. This makes it difficult to drive software GC to consistent results. The IHGC is

shielded from instruction fetches by the cache and the design is deterministic and relatively simple,

so can be precisely driven from the CPU. Programs can be created with entirely predictable request

patterns that allow characterisation of the IHGC’s M&S, GetM, read, and write performance.

9.1 Measurements

Useful metrics were chosen to capture the IHGC’s complete performance characteristics. The drive

signals and metrics chosen are described in table 9.1.

Time was measured in clock cycles. Heappoint and Livesize were sampled during execution to

provide an average value for a whole program. Response and blocking times were similarly averaged

and hence, fractional quantities of clock cycles were recorded.

Data gathering is a separate module within the IHGC, operating in parallel and only requires

integer hardware. The only exceptions are the Live and Dead handle counts, which do not slow the

main state machine but are part of it.

9.2 Test Programs

Two kinds of test program were created. Firstly, assembly programs were used to precisely control

particular IHGC inputs. Secondly, C programs representative of real programs were created (see

Chapter 10).

The frequency of GetM, load, and store instructions can be precisely controlled in assembly

programs. Six assembly code tests were developed and are described in table 9.2. Code files for the

tests are attached with this thesis.
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Name Driven? Description
Read/Write/GetM requests Yes Total count during execution.
Read/Write pointer vs. value ratios Yes Calculated from program analysis.
GetM size per request Yes Size in words.
Livesize Yes Size in words.
Live handle count Yes Counted during each mark phase

(may exceed number of allocated tuples).
Dead handle count Yes Counted during each sweep phase

(cannot exceed number of allocated tuples).
Execution time Yes Total execution time (excl. initialisation).
Read/Write/GetM response time No Time between doing_action and ∗ready
Read/Write/GetM block time No Time between ∗valid and doing_action
GetM’s blocked due to no handles count No Request blocked due to nil free list.
GetM’s blocked due to no space count No Request blocked due to no heap space.
Heappoint No Size in words.
Maximum heappoint No Size in words.
Directory & memory accesses count No Number of IHGC accesses to memory.
Mark & Sweep cycles count No Number of times sweepend is reached.
Out of memory count No OOM condition hit count (max. 1).
Initialisation time No Initialisation time of memory and directory.

Table 9.1: Drive signals and metrics used to characterise the IHGC

9.3 Difficulties of evaluating results

Several problems were overcome to obtain fair results. Firstly, the IHGC initialisation stage blocks

the first instruction fetch of the program for a long time. This blocking time occurs once per system

reset and could be significantly optimised in a real system, so has been excluded from the results.

The test framework required out instructions to send the "Start" and "Finish" messages during

each test. This is a constant time factor of each test program but could not easily be removed from

the IHGC data. The time required has been left in the execution time measurement. Additionally,

to minimise the proportion of execution time spent on start/end messages, each test was (where

possible) executed for 100,000 iterations in order to give an unskewed average reading.

ASM Test (1) has two modes (Mode 0 and Mode 1), determined by the retain parameter.

However, Mode 1 results were not very useful because both the number of objects created and the
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No. Compiler Inputs Description
(1) size, frequency, Allocates 1 tuple of size words every 1 in frequency instructions

iterations, retain for iterations number of repetitions. If retain then the objects
were retained in the stack. The object size and frequency were varied
between tests. A wide range of object sizes were used with 3 fixed
frequencies.

(2) size, frequency, As (1) but range of frequencies with 3 fixed object sizes and no
iterations retain option. A slightly different program structure creates a

different pattern of requests to the IHGC.
(3) frequency, mode Loads (mode 0) or stores (mode 1) a value (0xDEADBEEF) every

iterations 1 in frequency instructions for iterations number of repetitions.
(4) frequency, mode As (3) but stores/loads a pointer instead of a value. Pointer is

iterations pre-allocated and remains live throughout the program.
(5) frequency, Stores then loads a pointer or a value in each iteration. Ratio of

iterations pointers to values is 1 pointer for every frequency values. Repeats
for iterations number of repetitions.

(6) frequency, As (5) but always uses a value instead of a pointer. This was used as
iterations a control test to determine what was GC behaviour and what was

caused by the program.

Table 9.2: Assembly code test programs

object size changed between each test (since retaining objects meant they remained live so fewer

objects could be created).

Lastly, in order to fairly represent the full range of values tested, the majority of graphs are

plotted on log X and log Y scales. The graphs shown confirm expected results or showed something

unexpected - a copy of all graphs plotted are provided in separate files with this thesis.

9.4 Results

The following sub-sections present the ASM test results grouped by characteristic. The list below

specifies what is shown by each of the possible result graphs. Each test was run with up to three

variants (plotted as separate lines). Tests were created using a code file which was then compiled

to separate executables for each value of each variable. The hardware is deterministic, so all three

repeats of a test gave identical results. (This is also evidence that the hardware reset correctly
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between each test.)

Avg. allocation size per clock cycle The total size of all allocations made (including single stack

tuple but excluding program tuple) divided by the total execution time of the program.

Execution time The total execution time of the program in units of clock cycles (the FPGA used

100MHz clock speed).

Avg. GetM blocking time The total number of clock cycles the GC blocked GetM requests divided

by the number of GetM requests (excluding the program object).

GetM block: No handles count The number of times a GetM request was initially blocked be-

cause the IHGC was out of handles (free register was nil). This is not mutually exclusive

with the "No space count".

GetM block: No space count The number of times a GetM request was initially blocked because

the IHGC was out of space (heappiont+ getmsize + 1 >= MAIN_MEMORY _SIZE).

This is not mutually exclusive with the "No handle count".

Avg. heap-point The average of all samples of the heap-point taken at 10,000 clock cycle intervals

during execution (excludes IHGC initialisation).

Live/dead handles count The total number of live and dead handles found during all mark and

sweep cycles during execution. These indicate if the IHGC is functioning correctly for a given

program.

Avg. live/dead handles per M&S cycle The average number of live and dead handles found per

mark and sweep cycle.

Avg. live-size The average of all samples of the live-size taken at 10,000 clock cycle intervals

during execution (excludes IHGC initialisation).

Avg. Mark-Sweep cycle time The average number of clock cycles taken to complete a mark-

sweep cycle during execution (excludes IHGC initialisation).

Avg. read/write blocking time The total number of clock cycles the GC blocked read/write

requests divided by the number of read/write requests (includes instruction fetches which

occur exactly once per execution to fill the cache).
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Figure 9.1: Total live and dead handle counts for
ASM Test (1), objects not retained

Figure 9.2: Average livesize for ASM Test (1),
objects not retained

Avg. read/write response time The total number of clock cycles the GC spent processing read-

/write requests divided by the number of read/write requests. This is not constant due to the

difference between read and write and between writing pointers and values.

Heap-point overhead The average heap-point divided by the average livesize, as a percentage.

Max. heap-point overhead The maximum heap-point divided by the average livesize, as a per-

centage

Graphs of directory and memory accesses provided no further insight and initialisation time and

GetM response time are constant values so were not plotted.

In some cases graphs have been plotted with an offset of +1 in the x or y directions. This is so

that values at zero aren’t lost on the logarithmic axes.

9.4.1 Correctness

ASM Test (1) allocates one object per iteration and in all cases was run with 100,000 iterations.

Figure 9.1 shows, as expected, that the live handle count is always greater than or equal to 100,000.

A handle may be counted as live more than once if it is live in more than one mark cycle. A handle

is counted as dead when it is cleared during a sweep cycle and can only be dead once per allocation.

The graph shows this behaviour as expected. In some tests, a lower dead count is recorded as not

all tuples were swept before the test ended. Overall, the graph shows that the IHGC does not lose

handles and it does not free them twice.

46



9.4. RESULTS

Figure 9.3: Total live and dead handle counts for ASM Test (4)

The minimum livesize in this implementation is the fixed program size of 512 words. Figure 9.2

shows that the average livesize is always at least 512 words and grows with larger or more frequently

allocated objects.

Figure 9.3 shows that at frequency 1 in 220, the dead handle count for the writing test spikes

to a value of 1. This is not an error. Simulation confirms that the IHGC sweeps the test’s objects

between the main code completing and the test issuing the ebreak termination instruction.

9.4.2 Responsiveness

Figure 9.4 shows that for the majority of requests during ASM Test (1) (Mode 0), enough handles

were immediately available. However, for high allocation frequencies and small, non-zero object

sizes, the free list ran out. For zero-sized objects, M&S can free handles very quickly as very little

memory has to be scanned. However, for larger objects, more sweeping takes place resulting in

slower M&S. For object sizes 2 to 6, handles ran out approximately 22 times. For sizes 8 and 10,

handles ran out less often: 14 and 17 times respectively. This slight reduction, and then the return

to zero OOH for larger objects, is explained by OOS starting to occur, shown by figure 9.5. OOS

can occur with fewer than the maximum number of tuples so at least one handle is always free. A

system designer will need to plan carefully the ratio of tuples to space.

Figure 9.5 also shows that the OOS counts converge for all three frequencies. In other words,

the GC blocking time becomes the dominant performance factor meaning it doesn’t matter how

fast the program tries to allocate memory. Objects in ASM Test (1) are not scanned during marking

since they do not contain pointers (they are not deep). In this test, therefore, the slow part of M&S

is the sweepzero phase.
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Figure 9.4: Total GetM blocked by OOH count
for ASM Test (1), objects not retained

Figure 9.5: Total GetM blocked by OOS count
for ASM Test (1), objects not retained

Figure 9.6: Average execution time for ASM
Test (2)

Figure 9.7: Average read/write response time for
ASM Test (3)

However, the OOS counts shown in figure 9.5 grow linearly with object size suggesting that the

IHGC M&S is predictable. The sweep behaviour results in lots of space suddenly becoming available

at the end of each cycle and so many new objects can be allocated without blocking. The OOS

range is 0.027% to 30% of the total 100,000 objects allocated during the tests, even though with

object sizes of 10,000 words all of main memory would be consumed by just 6 objects. This suggests

that the GC is doing an effective job at keeping up with the program.

Figure 9.6 shows the relationship between object size, allocation frequency and execution time

for ASM Test (2). In all tests, 100,000 objects were allocated. At low allocation frequency, the total

execution time is determined by the program alone. At higher frequencies larger objects take longer

to sweep and so the total execution time is longer. Smaller objects take less time to sweep so the

system never runs out of space but does run out of handles.
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Figure 9.8: Average read/write response time for
ASM Test (4)

Figure 9.9: Average execution time for ASM
Test (5)

Figures 9.7 and 9.8 show that reading a value or pointer on average takes the proven upper

bound time of 7 clock cycles. This suggests that requesting the word that the IHGC is currently

sweeping is a very rare case. Writing a value takes on average the upper bound time of 8 clock cycles

where as writing a pointer takes, on average, 14.67 clock cycles. This is biased towards the upper

bound which suggests that most often when writing a pointer to memory, the related tuple is not

already marked and marking is ongoing (since the read tests have established that the alternative

route is very rare).

ASM Test (5) writes a pointer one in every so many value writes. ASM Test (6) was designed as

a control test for ASM Test (5) to distinguish program effects from IHGC function. It uses exactly

the same program structure but a value is written instead of a pointer. Figure 9.10 shows consistency

and that higher frequency of writing results in a lower execution time, as expected. However, figure

9.9 shows less consistency and at the highest frequency (every write is a pointer), the execution

time is significantly increased. This suggests that writing pointers to memory introduces unexpected

effects that software developers would need to be made aware of this in order to optimise their code.

Furthermore, it may be beneficial for future work to look at compiler optimisations that minimise

pointer stores.

The results around the turning points for low and medium frequencies shown in figure 9.11 are

unexpected. The graphs show that for the same object size near the turning points, allocating at a

lower frequency results in faster execution time. Figure 9.6 shows the same effect occurring in ASM

Test (2) for a given object size (the bump for large objects is the most visible). This result can be

explained by the interaction between GetM and the internal Mark-Sweep functionality.
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Figure 9.10: Average execution time for ASM
Test (6)

Figure 9.11: Average execution time for ASM
Test (1), objects not retained

Figure 9.12: Average GetM blocking time for
ASM Test (1), objects not retained

Figure 9.13: Average M&S time for ASM Test
(1), objects not retained

With small object sizes, M&S cycles complete faster than memory is allocated meaning the

system doesn’t run out of space and so the program runs at the fastest speed possible (determined

by the allocation frequency). At large object sizes, the sweep phase does not complete before all

free memory has been allocated. This means a request has to be blocked for another entire M&S

cycle before space becomes available (because heappoint is updated in sweepend). This creates a

large blocking time (approximately the M&S time - see figure 9.12) which dwarfs time between

allocation requests and so the M&S time determines the program’s total execution time.

Within the turning region, the interaction between allocation frequency and M&S cycles must

be inspected more carefully. At high frequency, the reasoning from the previous paragraph applies.

However, at lower frequency for the same object size, the IHGC is able to reach sweepend before

all available memory runs out. In other words, it is able to compact new objects faster than they
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are being allocated. Thus the next mark phase starts, detects lots of dead objects, and sweep then

clears lots of space (again, before memory runs out of space). If the IHGC can reach sweepend

before available memory runs out then it does not need to block any GetM requests. Since no

allocations are blocked, the program continues to execute at its maximum speed. Thus allocating

less frequently can decrease overall execution time.

From this we can conclude the following: The time taken to wait for a M&S to finish immediately

might be quite small (100s of clock cycles) compared to if the system runs out of space and the

program has to wait for an entire M&S to finish later (100,000s of clock cycles). Overall, it is

clear that software developers will need to consider performance of the underlying GC in order to

optimise their code. Pushing the IHGC to allocate as fast as possible at one time may drastically

slow down allocations at a future time, which could significantly reduce overall performance. Future

work should investigate ways to mitigate this effect, for example, by making freshly zeroed-out

memory available immediately rather than delaying to sweepend or by delaying starting M&S cycles

until they will have most effect (e.g. when only a chosen percentage of memory is free).

Collectively these graphs show that for given directory and memory sizes, it is possible to estimate

the relative performance of programs by knowing their average allocation frequencies and sizes,

and their read/write frequencies and types. Future work would test more variations of memory and

directory sizes, to form a general expression for the relationships.

9.4.3 Overheads

Figure 9.14 shows that, for ASM Test (1) (Mode 0), at low and medium allocation frequency, the

maximum heappoint is 100% of livesize, meaning there is no significant overhead. At high frequency

or with larger objects, the maximum heappoint is capped by the size of main memory (65,536

words). At larger object sizes, the average livesize increases (as objects remain live for longer while

they are marked and swept) and so the maximum heappoint is proportionally closer to livesize. The

jumps in maximum heappoint also relate to the transition points where the IHGC can no longer

keep up with allocations.

Figure 9.15 shows, for ASM Test (2), that at high allocation frequencies the blocking time

follows a smooth trend. This is because the blocking time is dominated by waiting for the few

M&S cycles that block a small number of allocations - the small variations from allocations that

aren’t blocked are absorbed and hidden. At low frequencies, the graph shows no trend within or
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Figure 9.14: Maximum heappoint overhead for
ASM Test (1), objects not retained

Figure 9.15: Average GetM blocking time for
ASM Test (2)

Figure 9.16: Average heappoint overhead for
ASM Test (2)

Figure 9.17: Maximum heappoint overhead for
ASM Test (2)

between object sizes. This is expected as the blocking time for a request is determined by the time

to complete any ongoing M&S state. The upper and lower bounds on this time (see Appendix D)

range between 1 and 11 clock cycles. Requests occur (effectively) randomly with respect to M&S

states and so the average blocking time (when not OOH or OOS) is tightly bounded but random

between those bounds.

Figures 9.16 and 9.17 show, for ASM Test (2), that for medium and large objects at high

frequency, the heap overhead is capped by the maximum heap size. For small objects, the overhead

is capped by the system running out of handles. It is interesting to note that the average heappoint

overhead shows a bump in the largest object curve next to the transition point. The cause of this is

explained in the previous subsection. The maximum heappoint overhead does not show this bump,

as is expected because it is a single upper bound value.
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Figure 9.18: Average read/write blocking time
for ASM Test (4)

Figure 9.19: Average read/write blocking time
for ASM Test (5)

However, it is also interesting to note that the maximum heappoint for small objects is the

same as the average. This is further evidence that the limiting factor is the number of handles

(since clearly more space was available) but also that the style of the tests programs means that the

IHGC is put under maximum stress. Despite this taxing workload, it is capable of keeping up. For

objects of 31 words or less (which is typical of current C# programs)1, 1 in 80 instructions can

be an allocation and the IHGC will not block for more than 11 clock cycles. This is significantly

higher performance than the best-case sustained workload supported by the latest .NET Framework

(developed by Microsoft), which requires hundreds of instructions between (or during) allocations.

The read/write blocking time for ASM Test (3) and for ASM Test (4) (figure 9.18) show no

correlation to frequency. Additionally, the M&S cycles do not appear to affect read/write time -

only the blocking time taken to complete any single M&S state matters.

However, figures 9.19 and 9.20 show that writing pointers more often than values does affect

average blocking time in an apparently chaotic way. This suggests that writing pointers causes

the IHGC to take a less consistent route through its M&S states resulting in requests randomly

interrupting a greater variety of M&S states, thus causing the blocking time to vary more. Further

work will be required to prove this suggestion.
1This is based off the author’s experience from an ongoing study looking at object sizes in modern high-level

software. It is hoped that this study will be completed and made available later in 2017.
1This thesis is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved by,

Microsoft Corporation.
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Figure 9.20: Average read/write blocking time for ASM Test (6)

9.4.4 Scalability

Figure 9.21 shows the average mark and sweep cycle times for ASM Tests (2) to (6). They suggest

that the frequency of reads, writes and accessing pointers influence mark and sweep time by up

to a factor of 1.5. However, the results from ASM Test (2) show that M&S time is most affected

by allocation size and frequency, up to almost three orders of magnitude if the system runs out

of memory. This suggests that providing live statistics to programs may allow them to cooperate

better with the IHGC. However, prior work has suggested that the cost versus benefit of responsive

applications is not worthwhile when compared to conventional approaches to optimising software.

A few tests were conducted that deliberately ran the system out of memory. The results of these

tests are not shown in the graphs as they would significantly and misleadingly skew the results. The

OOM tests showed that the OOM condition is entirely predictable based on the number of handles

and amount of memory and the allocations made by the programs. The exact moment the system

would hit the OOM error and stop could be predicted to the exact instruction and clock cycle for

programs which went directly to OOM (i.e. did no dynamic allocation activity before allocating

enough handles or memory to reach OOM).
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Figure 9.21: Average M&S time for ASM Tests (2) to (6)
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Chapter Ten

Performance of typical programs

This chapter discusses three programs that were created to be representative of some typical C

programs. The first program created linked lists of variable length and either discarded them or

stored them in a circular buffer of 1024 items. The second program has already been presented in

Chapter 8. The third program created binary trees of varying depths between various maximum and

minimum points. This last program was adapted from the binary trees toy benchmark from The

Computer Language Benchmark’s Game.1[9]

Figures 10.1 and 10.2 show graphs of interesting results from C Tests (1) and (3). Figure 8.2

shows the results of C Test (2). The linked list test shows that when linked lists were discarded

soon after being created, the GC blocking time (and thus overall execution time) grows nearly

linearly until the final few tests when the number of available handles started to run out. When

the linked lists were retained in a circular buffer, the execution time initially grew at a similar rate

to the discarded lists test. However, it starts to run out of handles much sooner and so allocation

blocking time grew rapidly. Results for larger retained lists could not be taken as the number of

objects required would have been greater than the number available.

Both the discarded and retained tests created the same number of objects, so as can be seen,

the dead handle counts were identical. However, in the case of the retained objects, the objects

remained live across more M&S cycles so the live object count increases exponentially. However, the

execution time would not be able to continue to grow exponentially because of the proven upper

bounds on M&S time and the limited number of handles in the system. It is interesting to note that

for the tests which contained similar numbers of live objects (at any given moment in the program)

had similar M&S times (and overall execution times). This suggests that in future, adding more

handles to the system would allow larger retained linked lists and reduce the execution time as OOH
1A comparison to The CLBG’s results is not made since it is not of interest. The binary trees program is used

here only as a basis for an example of some typical program work.
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would not be reached so quickly. In other words, it would simply stretch the graphs shown to larger

lists.

Figure 10.1: Average blocking time per allocation for C Test (1)

C Test (3) shows the same result as C Test (2) in that H/W Malloc was faster than Simple C

Malloc. The average heappoint overhead for simple C malloc declines as the tree depth increases

because the tests last longer and so the average livesize approaches its actual value thus making the

overhead appear less. However, it is possible to see that for H/W Malloc the heappoint overhead is

approximately 10% to 15% of the average livesize. This is the case so long as the IHGC can keep

up with the program. However, if the IHGC starts to hit OOS conditions then the overhead reaches

the maximum of 12,800% (for this amount of main memory). As such, the system fails criterion 8.4

because it is not always met. Future work should investigate how to make free memory available as

soon as possible, even during a sweep cycle, so as to reduce the effect of blocking heappoint update

to sweepend.

Additionally, criterion 8.3 is not met by C Test (1) or (2) because C programs store pointers

on the stack and the stack is not cleaned up after a function exits. As a result, memory which C

considers to be dead, is detected as live by the IHGC and so the livesize and heappoint are kept

much larger than in the original C programs. A solution to this to allocate a new object for each

stack frame, which offers other potential benefits for exception handling.

The typical programs shown behave as would be predicted from the characterisation of the

IHGC in Chapter 9.
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Figure 10.2: Results for C Test (1) and C Test (3)

(a) Total GetM blocked by OOH count for C Test (1) (b) Total live and dead handle counts for C Test (1)

(c) Average M&S time for C Test (1) (d) Average execution time for C Test (3)

(e) Average heappoint overhead for C Test (3) (f) Average read/write blocking time for C Test (3)
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Chapter Eleven

Outcomes and Conclusions

This thesis has shown that a general purpose hardware garbage collector can be created and is viable

for implementation in current commercial and cutting edge technology standards. The Integrated

Hardware Garbage Collector design improves upon prior efforts in this field by being more flexible,

configurable and having greater scope for future work. Of the 51 criteria for feasibility, all but 3

have been met. Of the 3 which were not met, 13.2 is reasonably not met since the majority of

modern systems contain at least a minimal instruction cache, and 8.3 and 8.4 can be minimised (and

probably met) by good system design, improved compiler support and future work on optimisations.

Software GC comes with big trade-offs, and large, unavoidable overheads that make it unsuitable

for real-time or embedded systems. This thesis has demonstrated that the IHGC has real-time

performance and can be made small enough for embedded devices. As a result, for the first, time

languages such as C# and Java could be used for programming such devices without restriction on

language features or usage. This is a significant step forward for hardware and software development,

as high level languages significantly improve security, reliability and implementation time.

Traditional hardware memory models offer no tangible security to the programmer. Security is

either enforced by an operating system or ignored altogether. With the increasingly large IoT market,

where devices execute multiple threads and machine code may be downloaded across the internet,

providing hardware guarantees is becoming a bigger concern. This thesis has shown the IHGC can be

integrated with any of the ISAs currently in popular use and as such, could be integrated with the

processor in the majority of current devices. Furthermore, this thesis has shown that the software

changes required of well-written, C/C++ or high-level language programs would be minimal and

generally apply only to the standard library or compiler. As such, it is viable to rapidly bring the

necessary hardware guarantees to future IoT, automotive and similar devices.

When compared to current software memory management, even the simplest equivalent C

implementation is slower than using the IHGC. Although it is possible to not zero-out memory using
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standard C malloc functions, which saves execution time, it is becoming increasingly apparent that

zeroing out memory before use is a necessary practice in order to avoid bugs. Furthermore, the

speed of standard malloc and free functions is between 1 and 3 orders of magnitude slower than the

single GetM instruction of the IHGC.

This thesis has presented and proven feasible the first general purpose, fully concurrent garbage

collector which can be implemented in hardware and integrated with an existing ISA.
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Chapter Twelve

Future Work

There are a significant number of ideas to pursue in future work. This chapter presents ideas in three

categories: ideas which follow on directly from this thesis, hardware research ideas, and software

research ideas. The ideas are presented in no particular order and regardless of scale or scope, each

is significant and worthy of investigation.

12.1 Continuation of work

• The author will be starting a PhD in September 2017, initially looking at formal verification

of IHGC design.

• Bug fix the design: A particular pathological program could destroy a linked list from the top

downwards, causing it to be freed too early. The IHGC should iterate over the CPU registers

until all pointers are marked in order to avoid this early-freeing case. It is probably possible to

do this in a way which will not affect the WCET of Mark and Sweep.

• Bug fix implementation: The main state machine should still be able to progress even with

simultaneous GetM/R/W requests. This can be achieved by adding an extra condition to the

interruption logic.

• The modified version of the RISC-V Compressed ISA specification should be written up and

published.

• The implementation should be optimised to overlap memory and directory requests wherever

possible. This will reduce the time required for some of the main states.

• The implementation should be optimised to reduce the number of clock cycles lost to state

transitions
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• The implementation should be extended to allow the program object to be dynamically

allocated, changed and written to.

• There is no existing suite of programs for benchmarking GCs. It would be useful to define a

set of metrics for GC analysis and create a set of portable benchmarks.

• A range of main memory and directory sizes should be tested and the final, large set of data

analysed to create general characteristic equations for the IHGC. These could then be used to

predict performance of a program by static analysis of the programs use of memory.

• Proper mechanisms for error handling and recovery from errors should be investigated.

• The current design relies on a proportion of memory cycles being unused by the CPU core.

This is a problem when integrating with highly pipelined processors, such as applications

scale processors. Methods to overcome this should be investigated, for example, dual ported

memory.

• Dual ported memory and/or directory could allow simultaneous mark/sweep and read/write.

• There is a possible trade-off for the directory. It is feasible to put the directory into main

memory and retain a smaller data cache in the IHGC. The effect of such a design is not yet

understood and will need to be explored.

• Although this thesis has shown that caches can be placed on either side of the IHGC, the

design of such caches and the effect they may have has not been explored.

• Compiler support for other languages e.g. C#, Java, Haskell.

• The reset mechanism could be optimised in ASIC design by creating custom reset circuitry.

• It would be interesting to synthesise and manufacture a chip at around the 160nm scale to

see if full ASIC design creates any interesting differences to FPGA.

12.2 Hardware

• A method for making freed memory accessible before the heap-point is updated at the end of

sweeping.
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• Not starting the next mark or next sweep until some condition is met, for example, only 25%

of memory left free or some estimate of the M&S work required reaches a minimum level.

• The current design forces all objects to have the same maximum size and size granularity.

However, real systems typically have many small objects and a few very big ones. It would be

useful to extend the current design to allow two sets of objects, some in a "large" category

and others in a "small" category, where the bits of a pointer used for handle and offset are

divided differently in the two categories.

• The IHGC is in an excellent position to provide fast memory copy and fast memory set

functions. However, before implementing such features, it would be useful to know how often

they could be used by real software (allowing for the fact that memset(0) of any new objects

can be eliminated by the existing IHGC design).

• Generational garbage collection is a common optimisation that should be relatively easy to

add to this design by simply tracking the age of objects in a small counter and leaving such

objects marked.

• It may be useful to provide a predictive or multiple allocation interface in order to optimise

software performance.

• For multi-core systems, multiple simultaneous allocations or reads/writes must be made

possible

• In some contexts it may be useful to provide a mechanism for protecting objects, such as

making them immutable or only accessible from a particular CPU state.

• The IHGC prevents conversion from values to pointers and vice-versa. This poses a problem for

the majority of embedded device driver code, which relies on fixed addressing. A mechanism

for dynamically allocating memory-mapped objects for devices and detecting those objects

would be extremely useful and significantly simplify the software ecosystem.

• The IHGC design does not yet work with multi-processing/multi-threaded systems

• In a multi-process system, there is a risk that a malicious program attempts to consume all

the system resources or slow down other processes in the system by rapidly allocating and

destroying objects. A mechanism for detecting and handling such behaviour will be required.
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CHAPTER 12. FUTURE WORK

• Support for high performance computing systems - there are undoubtedly numerous new

possibilities that we have not thought of yet using this new design.

• Traditional paged memory creates virtual memory space by "paging" to non-volatile media

such as hard disk drives. The IHGC could potentially know precisely all the memory associated

with a process and so save it directly to disk (DMA) with no wasted space. In addition, it

may be possible to provide compression and encryption in hardware in the stream between

the media and the memory.

• The IHGC knows precisely what memory is in use. It may, therefore, be possible and beneficial

to power down individual memory modules when they are not in use, thus saving a lot of

power. This could have a big impact on battery life or energy consumption for large memory

devices such as laptops and mobiles.

• It would be worth re-investigating multi-processing communication mechanisms to see if GC

can be performed across a network of processors, thus allowing automatic detection and

clean-up of deadlocked processes.

• This thesis has looked only at CPU. It would be interesting to apply the design to GPU and

DSP style architectures.

• Per-allocation statistics/flags/trace information could be made available to software developer

at runtime. This would allow detection of performance issues and program pinch points.

• Functional processing is a small but growing field, especially as languages such as Haskell

become increasingly popular. Functional programs rely heavily on GC and so previous efforts

to create a general purpose functional processor have been stuck at the research stages. The

IHGC design could be the breakthrough required to produce a general purpose functional

processor.

12.3 Software

There are far more ideas for software that will emerge from this new design than can currently be

predicted. Presented here are some of the author’s more exciting or radical ideas.
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12.3. SOFTWARE

• Reduction of OS functionality/complexity/time/energy consumption: Current operating sys-

tems spend vast amounts of time, energy and code on memory management and security

patching the traditional memory model. The IHGC could eliminate the majority of this code.

• Aside from in a few special cases, it has never before been possible to allocate memory during a

processor interrupt routine. The IHGC operates independently from the CPU state and as such,

does not care if the CPU is in an ordinary function or an interrupt routine. This means memory

can be allocated during an interrupt. This is a small change with profound implications for

software design. For example, a network switch will no longer need to pre-allocate memory for

a circular buffer of packets and use complex mechanisms to handle receiving and forwarding

the packets. Instead, memory can be allocated during the interrupt and passed around more

easily, being discarded automatically. This could significantly reduce software complexity and

improve performance. As another example, most device drivers rely on begin, interrupt and

end functions, where begin and end are used primarily to allocate and clean up memory

resources. These aspects could be eliminated.

• Combination with statically checked languages such as Rust. Such languages aim to provide

compile-time guarantees but there are still some features that cannot be statically checked.

Additionally, an attacker can use a different language to create machine code. Combining

static checking with guaranteed runtime checks could produce a highly reliable and trustworthy

environment for programmers.

• Software prompts to the IHGC to optimise behaviour, such as prompting when to start

Mark-and-sweep cycles.

• Support for software destructors. Some languages, such as C#, allow the developer to define

functions to be called when an object is going to be destroyed (freed). The IHGC could provide

a mechanism (interrupt or queue) that allows software to execute such destructors before the

IHGC frees an object.

• Software patching value to pointer conversions may be possible but would weaken the

guarantees provided by the hardware.

• Compiler optimisations for example, having the compiler produce code which writes pointers

to memory less often.
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Appendix A

GC State Machine

A.1 Addresses and the Directory
Each word w in memory or in a register has a flag wptr and a word wword. If wword is a pointer,
indicated by wptr being true, then:

whandle Upper bits: identifies a directory entry of a tuple
woffset Lower bits: identifies an address within a tuple

Each directory entry d of a tuple has five components:

daddr the address of the tuple in memory
dsize the size of the tuple (in words)
dmark the marking flag for garbage collection
ddeep a flag to indicate whether the tuple contains pointers
dlist a linked list of directory entries used during mark/sweep

For a 32-bit wordlength, one possible configuration would allow up to 65536 tuples each of size up
to 65536 bytes and the directory would have 65536 entries each with 62 bits:

daddr, dsize, dmark, ddeep, dlist ← 30, 14, 1, 1, 16
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A.2. GARBAGE COLLECTOR VARIABLES

A.2 Garbage collector variables

mem represents the memory
initreg the index of the next CPU register to mark (initialised at reset to 0)
current points to list of directory entries currently being scanned
next points to a list of directory entries to be scanned next
free points to a list of free directory entries
tuple is the tuple being processed
size is the number of words in the tuple being processed
index is the offset of a word within the tuple being processed
livesize is the total size of the data that has been marked
heappoint is the highest location in the heap
src is the memory address from which a tuple is copied during sweeping
dest is the memory address to which a tuple is copied during sweeping
oomcount whether the GC has already reached sweepend while out of memory
erroroom whether the GC out of memory and unable to service the current

Get Memory request

A.3 Memory access variables

buffer holds a word being read from or written to memory
rwindex is the offset of a word being read from or written to memory
pointer is a pointer used to access a tuple
offset is a word offset used to access a word within a tuple

A.4 CPU Request/Access variables

getmwaiting indicates if a Get Memory request is waiting or not
getmspace the size of memory to allocate (valid iff getmwaiting is true)
cpuhann the handle value of the nth CPU register
cpuptrn the ptr flag of the nth CPU register
cpuregsavailable whether the CPU registers are available for access or not
cpuregscount the number of CPU registers

A.5 Marking

markinit: if cpuregsavailable
then
{ if cpuptrinitreg ∧ cpuhaninitreg 6= nil

then
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APPENDIX A. GC STATE MACHINE

{ dir[cpuhaninitreg]list ← nil
& if ¬dir[cpuhaninitreg]mark

then dir[cpuhaninitreg]mark, livesize← true, livesize+ dir[cpuhaninitreg]size + 1
else skip

& if dir[cpuhaninitreg]deep
then next← cpuhaninitreg

else skip
}
else skip

& state← marknext
}
else skip

markscan: if index ≤ size
then

if mem[src+ index]ptr ∧ (mem[src+ index]handle 6= nil)
then
{ tuple, index ← mem[src+ index]handle, index+ 1
& state ← markadd
}
else index ← index+ 1

else
if current = nil
then state ← marknext
else
{ src, size, index← dir[current]addr, dir[current]size, 1
& current ← dir[current]list
}

markadd :{ if ¬dir[tuple]mark

then
{ dir[tuple]mark, livesize ← true, livesize+ dir[tuple]size + 1
& if dir[tuple]deep

then dir[tuple]list, next ← next, tuple
else skip

}
else skip

& state← markscan
}

marknext : if next = nil
then

if initreg < cpuregscount
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A.6. SWEEPING

then state, initreg ← markinit, initreg + 1
else
{ dest, src, tuple ← 0, 0,mem[0]handle
& state, initreg ← sweepscan, 0
}

else
{ src, size, index← dir[next]addr, dir[next]size, 1
& current, next, state ← dir[next]list, nil,markscan
}

A.6 Sweeping

sweepscan: val size, nsrc = dir[tuple]size, src+ dir[tuple]size + 1 in
if src = heappoint
then heappoint, livesize, state← dest, 0, sweepend
else

if dir[tuple]mark

then
if src = dest
then

if nsrc = heappoint
then livesize, state ← 0, sweepend
else src, dest, dir[tuple]mark, tuple ← nsrc, nsrc, false,mem[nsrc]handle

else dir[tuple]mark, index, state ← false, 0, sweepread
else
{ dir[tuple]list, free ← free, tuple
& if (src+ size) < livesize

then src, tuple ← nsrc,mem[nsrc]handle
else
if src < livesize
then index, state ← livesize− src, sweepzero
else index, state ← 0, sweepzero

}

sweepread: if index <= size
then
{ copyword ← mem[src+ index]word

& copyptr ← mem[src+ index]ptr
& if (src+ index) < livesize

then state ← sweepwrite

else state ← sweepclear
}
else
{ dir[tuple]addr, dest ← dest, dest+ size+ 1
& if (src+ size+ 1) = heappoint
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then heappoint, livesize, state ← dest+ size+ 1, 0, sweepend
else
{ src, tuple ← src+ size+ 1,mem[src+ size+ 1]handle
& state ← sweepscan
}

}

sweepclear: { mem[src+ index]word,mem[src+ index]ptr ← 0, false
& state ← sweepwrite

}

sweepwrite: { mem[dest+ index]word ← copyword

& mem[dest+ index]ptr ← copyptr
& index, state ← index+ 1, sweepread
}

sweepzero: if index <= size
then
{ mem[src+ index]word ← 0
& mem[src+ index]ptr ← false
& index ← index+ 1
}
else

if (src+ size+ 1) = heappoint
then heappoint, livesize, state ← dest, 0, sweepend
else
{ src, tuple ← src+ size+ 1,mem[src+ size+ 1]handle
& state ← sweepscan
}

sweepend: if getmwaiting ∧ free = nil ∧ heappoint+ getmspace + 1 >= heappointmax

then
if oomcount = 1
then erroroom ← 1
else state, oomcount← markinit, 1

else state, oomcount← markinit, 0

A.7 Memory allocation and access

getmem: { dir[free]addr, dir[free]size ← heappoint, space
& dir[free]mark, dir[free]deep ← true, false
& heappoint, livesize ← heappoint+ space+ 1, livesize+ space+ 1
& mem[heappoint]handle,mem[heappoint]ptr ← free, false
& areghandle, aregptr, free ← free, true, dir[free]
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A.7. MEMORY ALLOCATION AND ACCESS

& oomcount← 0
}

read: val rwindex = pointeroffset + offset+ 1 in
if (pointerhandle = tuple) ∧ (rwindex = index)∧
((state = sweepclear) ∨ (state = sweepwrite))

then bufferword, bufferptr ← copyword, copyptr
else
if (pointerhandle = tuple) ∧ (rwindex < index)∧
((state = sweepread) ∨ (state = sweepclear) ∨ (state = sweepwrite))

then
val address = dest+ rwindex in
bufferword, bufferptr ← mem[address]word,mem[address]ptr

else
val address = dir[pointerhandle]addr + rwindex in
bufferword, bufferptr ← mem[address]word,mem[address]ptr

write: val rwindex = pointeroffset + offset+ 1 in
if (pointerhandle = tuple) ∧ (rwindex = index)∧
((state = sweepclear) ∨ (state = sweepwrite))

then copyword, copyptr ← bufferword, bufferptr
else
if (pointerhandle = tuple) ∧ (rwindex < index)∧
((state = sweepread) ∨ (state = sweepclear) ∨ (state = sweepwrite))

then
val address = dest+ rwindex in
mem[address]word,mem[address]ptr ← bufferword, bufferptr

else
val address = dir[pointerhandle]addr + rwindex in
mem[address]word,mem[address]ptr ← bufferword, bufferptr

if bufferptr
{ if (¬dir[bufferhandle]mark)∧

((state = markscan) ∨ (state = markadd) ∨ (state = marknext))
then
{ dir[bufferhandle]mark, ← true
& livesize ← livesize+ dir[bufferhandle]size + 1
& dir[bufferhandle]list, next ← next, bufferhandle
}
else skip

& dir[pointerhandle]deep ← true
}
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Appendix B

Software Used

The following software was used to make the project and this thesis. The software written by the

author or other code adapted for use in the project has been referenced at appropriate points in this

thesis, and is provided in attached files.

• Xilinx® Vivado® v2016.1 WebPACK™ Edition

• Draw.io

• Miktex

• TexnicCenter

• Microsoft® Windows®

• Cadence® JasperGold®

• Git

• GitKraken®

• Notepad++

• Gitlab®

• SumatraPDF

• Techsmith® Snagit®

• Adobe® Photoshop® CS3
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Appendix C

Sample Calculations

The following is an example of calculating the directory size. The address_size is:

log2(memory_size)− 2

where memory_size is the size of main memory in bytes. For main memory size of 65,536

words, the address_size equals 16 bits. The handle size is:

log2(handles)

where handles is the number of handles. For 4,096 handles, 12 bits are required. The length_size

is:

log2(max_object_size)− 2

where max_object_size is in bytes. For objects of maximum size 65,536 words, 16 bits are

required. Putting that into equation 6.1, the directory size is 23,552 bytes which is 23KiB.
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Appendix D

Bounds Analysis Diagrams

The following figures were used to compute the lower and upper bounds of block and response

times for the IHGC. The bounds were then checked in behavioural simulation in Vivado v2016.1

64-bit edition.

Response times do not include the transition time taken to enter the first state of the operation.

Blocking times are computed separately (see evaluation in Chapter 4) taking into account transition

times and these response times.

Figure D.1: Response Time for Read/Write
Memory

Figure D.2: Response Time for Read/Write
Directory
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Figure D.3: Response Time for
Get Memory

Figure D.4: Sweep:Write State
Time

Figure D.5: Response Time for IHGC Request to Read

Figure D.6: Sweep:Clear State Time
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Figure D.7: Response Time for IHGC Request to Write

Figure D.8: Mark:Add State Time

Figure D.9: Mark:Scan State Time
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Figure D.10: Mark:Init State Time
The condition requiring the CPU’s registers to be available is

ignored as it is assumed that under the conditions necessary for
WCET of M&S, the core registers must be available at all times.
It is impossible to estimate the blocking time of the CPU core in

the general case.

Figure D.11: Mark:Next State Time

Figure D.12: Sweep:Read State
Time

Figure D.13: Sweep:Zero State Time
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Figure D.14: Sweep:Scan State Time
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