Badhamia versicolor and Trichia subfusca, new records for Belarus

Evgeny Moroz ¹ & Andrei Tsurykau ²-³*

¹ Laboratory of Mycology, V.F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus, Akademicheskaja str. 27, Minsk 220072 Belarus
² Department of Biology, Francisk Skorina Gomel State University, Sovetskaja str. 104, Gomel 246019 Belarus
³ Department of Ecology, Botany and Nature Protection, Institute of Natural Sciences, Samara National Research University, Moskovskoye shosse 34, Samara 443086 Russia

* Correspondence to: tsurykau@gmail.com

Abstract—Two myxomycetes, Badhamia versicolor and Trichia subfusca, are reported for the first time for Belarus. Descriptions and illustrations of both species are provided.

Key words—biodiversity, Mycetozoa, myxobiota, Protozoa, slime moulds

Introduction

Published accounts of the myxomycetes of Belarus date from the end of the 19th century (Błoński 1888, 1889, 1890; Twardowska 1885). During the ensuing years, the studies of slime moulds were accidental. Important research during the 20th century by Moroz & Novozhilov (1988, 1994) and Moroz (1996) reported 139 species including literature citations and new records. Since then and until very recently (Moroz & Novozhilov 2018; Tsurykau 2017), myxomycetes have been neglected in Belarus.

Recent revision of herbarium material revealed two globally rare myxomycete species new to Belarus, Badhamia versicolor and Trichia subfusca. The present contribution details their phenotypic characters, distribution, and ecological preferences.
Material & methods
The material was examined using Nikon SMZ745 and Olympus SZ61 dissecting microscopes and an Olympus BX51 compound microscope. Tissues were examined and measured in water. Voucher specimens are deposited in the herbarium of V.L. Komarov Botanical Institute of RAS, Saint Petersburg, Russia (LE) and the Scientific Herbarium of Belarusian Polesie of Francisk Skorina Gomez State University, Gomel, Belarus (GSU). Duplicate specimens are stored in the Herbarium of the Institute of Experimental Botany of the National Academy of Sciences of Belarus, Minsk, Belarus (MSK). Nomenclature follows Lado (2019).

Taxonomy

Badhamia versicolor Lister, J. Bot. 39: 81. 1901.

Mainly clustered, grey to dingy white, rugulose, sessile sporocarpis with a narrowed base, 0.3–0.5 mm diam. Capillitium white. Spores ovoid, dull purple, minutely warted, 10–14 × 9–11 μm, arranged in spherical or elliptic clusters (frequently hollow) with 10–40 spores in each cluster. Plasmodium colourless.

Specimen examined – BELARUS. Minsk region, Miadzel district, close to Konstantinovo village, 54°56′35″N 26°26′48″E, black alder forest, on wood of *Alnus glutinosa* (L.) Gaertn. (*Betulaceae*): 20.VIII.1995, E. Moroz (LE 320679, MSK-F 42108).

Ecology & Distribution. *Badhamia versicolor* is a facultatively corticolous species usually found in forest communities in temperate zone, although it can also thrive in arid areas (Abdel-Azeem & Salem Fatma 2013, Estrada-Torres & al. 2009, Wellman 2015). The bark of living trees, mosses, and lichens are the typical substrates (Pliszko & Bochynek 2017).

The species is known from all continents except Antarctica (Abdel-Azeem & Salem Fatma 2013, Macbride 1922, Moreno & al. 2013, Pliszko & Bochynek 2017, Ranade & al. 2012; Wellman 2015). In Europe *B. versicolor* has been reported from France, Germany, Great Britain, Italy, Poland, Russia (Leningrad region and the Republic of Karelia), Spain, Switzerland, Turkey, and Ukraine (Krzemieniewska 1960; Lado 1994; Martin & Alexopoulos 1969; Novozhilov 1993, 2005).

Despite its cosmopolitan range, *B. versicolor* is uncommon and often considered a rare species (Ing, 1999, Martin & Alexopoulos 1969). In Poland, *B. versicolor* is known as one of the rarest slime mould species, reported from only two localities (Pliszko & Bochynek 2017). Currently it is included in Polish national red list of myxomycetes (Drozdowicz & al. 2006).

In Belarus, the species was found within Narochansky National Park at the border of Blue Lakes landscape wildlife sanctuary, one of the most
undisturbed areas in the country. The forest area is dominated by *Alnus glutinosa* (black alder) with a high degree of waterlogging.

Discussion. The most similar species are *B. capsulifera* (Bull.) Berk. and *B. dubia* Nann.-Brenek., which differ from *Badhamia versicolor* by smaller spore clusters and larger sporocarps (Pliszko & Bochynek 2017, Poulain & al. 2011). Our Belarusian voucher has a white capillitium and therefore resembles *B. papaveracea* Berk. & Ravenel, which differs by having stalked sporocarps (Poulain & al. 2011).

Sporocarps are scattered stalked sporangia, total height 0.8–1.5 mm. Sporothesa subglobose, brown, 0.4–0.8 mm diam. Stipe dark brown, reaching about half the sporocarp height. Peridium double, with an inner membranous and an outer cartilaginous layer. Dehiscence occurring at the top of the sporotheca. Capillitium formed by yellow elaters of 4.5–5.5 μm diam. with 3–4 smooth spirals and with free, short, acute, rarely curved ends. Spores yellow in mass, pale yellow by transmitted light, 11–15 μm diam., regularly warted. Plasmodium not seen.

Specimen examined – BELARUS. GOMEL REGION, Buda-Koshelevo district, close to Rudnja-Ol'hovka village, 52°32'N 30°22'E, Scots pine forest, on thallus of lichen *Cladonia uncialis*, 7.VII.2005, A. Tsurykau (GSU 00266, MSK-F 42461).

Ecology and distribution. Like other *Trichia* species, *T. subfuscusca* inhabits decaying wood (Schirmer & al. 2015).

Trichia subfuscusca is a very rare species (e.g., Schirmer & al. 2015), occasionally reported from Europe (Austria, Italy, Poland, Russia [Moscow
and Murmansk regions, Perm Territory, Republic of Karelia, and Komi Republic], Spain, Sweden), Asia (India, Japan, Kazakhstan, Russia, Sri-Lanka), and North America (Canada, USA) (Fefelov 2005; Gmoshinsky 2014; Lado 1994; Novozhilov 1993, 2005; Schirmer & al. 2015; Vasyagina & al. 1977).

In Belarus the species was found in well-lit dry *Pinus sylvestris* L. (Scots pine) forest at the border of a sand quarry. The sporocarps were found on the terricolous lichen *Cladonia uncialis* (L.) F.H. Wigg. infected with lichenicolous fungus *Taeniolella beschiana* Diederich.

Discussion. The *Trichia botrytis* group includes five morphologically related species: *T. botrytis* (J.F. Gmel.) Pers., *T. erecta* Rex, *T. flavicoma* (Lister) Ing, *T. munda* (Lister) Meyl., and *T. subfusca* (Schirmer & al. 2015). The species most similar to *T. subfusca* is *T. botrytis*, which differs in larger (2–3 mm.), areolate sporocarps with paler lines of dehiscence, elaters that gradually taper to long slender points, and smaller (9–11 mm.) spores. Also similar to *T. subfusca* is *T. macrospora* B. Zhang & Yu Li, distinguished by thicker (5–6 μm diam.) elaters and larger (17–19 μm diam.) densely verrucose spores (Zhang & Li 2016).
Acknowledgments

We thank our reviewers, Kerry Knudsen (Czech University of Life Sciences Prague, Prague, Czechia) and Grażyna Adamonytė (Research Council of Lithuania, Vilnius, Lithuania), Mycotaxon Nomenclature Editor Shaun B. Pennycook for helpful comments and improvements, and Yuri K. Novozhilov (Komarov Botanical Institute of RAS, Saint Petersburg, Russia) for confirming the identification of Trichia subfusca. The work of Evgeny Moroz was financially supported by the grant 14.W03.31.0015 from the A.O. Kovalevsky Institute of Marine Biological Research of RAS.

Literature cited

Błoński F. 1888. Spis roślin skrytokwiatowych zebranych w r. 1887 w Puszczy Białowieskiej. Pamiętnik Fizyjograficzny 8: 75–119.

